
Background/Context:
• ML inference increasingly important for soft real-time

latency-sensitive applications
Problem:
• Model complexity increases —>latency increases; too

slow for soft-real time applications
• GPU —>more attractive for inference,suffers low

utilization (under latency constraints)
Solution:
• State of the art : temporal multiplexing
• Proposal :multiplexGPUs across multiple models andtime

DynamicSpace-Time Scheduling for GPU Inference
Paras Jain,SimonMo,Ajay Jain§,Alexey Tumanov,
JosephGonzalez, IonStoica

Motivation: Online inference leads to low GPUs utilization

CPU
Intel

Xeon

GPU
NVIDIA V100

2013 2014 2015 2016 2017 2018

0.001s

0.01s

0.1s

1s

10s

1ms

140ms

2820ms 2320ms 2190ms
4050ms

22ms 27ms 31ms

147ms

300ms SLO

In
fe

re
nc

e
La

te
nc

y

AlexNet
Top-1: 58%

VGG-16
Top-1: 72%

ResNet-152
Top-1: 77%

DenseNet-161
Top-1: 78%

SENet-154
Top-1: 79%

As models continue togrow,GPUs are the only way tomeet online inference
latency objectives

GPUs are under-utilizedinonline inference due tosmall batch-sizes

0% 10% 20% 30% 40%

100ms

200ms

300ms

% of peak FP throughput

Ta
il

La
te

nc
y

(p
99

)

100ms SLO

Batch
size 1

Batch
size 26

Batch
size 126

• Due togrowingDNNmodel complexity,CPUs cannot meet
online inference latency requirements

Key requirements for GPU kernel multiplexing
• Runtime performance must be predictable
• Multiplexingshouldincrease resource-efficiency
• Models ona single GPU shouldhave inter-tenant isolation

Time-only multiplexing: poor resource-efficiency
• Time-multiplexing:ondevice scheduler enables interleaved

executionof multiple CUDAcontexts (noparallel execution)
• Pro:Guaranteedisolationbetweentenants andpredictability
• Con:Sharply degradedthroughput andincreasedlatencies

Space-only multiplexing: poor predictability and isolation
• Spatial-multiplexing:NVIDIAMulti-Process Service to

partitionkernel launches across multiple CUDAStreams
• Pro:Kernels canexecute inparallel
• Con:Unpredictable performance andlackof isolation

Space-only
Multiplexing

A1 B1 C1x =

A2 x B2 C2=

...

...
...

Space-time
Multiplexing
(proposed) A ...AR1 B ...B1 R C ...C1 R

x =

Time-only
Multiplexing

A1 x B1 = C1

...A1 x B1 = C1

Proposed solution: Space-and-Time multiplexing
• Space-Time scheduling: Inter-model kernel batchingvia a

software scheduler
• Key idea: provide isolation via software

Conclusions: A large opportunity gap in performance
• There still exists a 7xperformance gap inutilization
• We show that space-time multiplexingcandrive upto2.5x-

4.6xthroughput speedups

Contact Paras Jain
paras_ jain@berkeley.edu§

Time-multiplexingsuffers large overheads comparedtosingle-tenancy

10 Replicas 11 Replicas 12 Replicas

Left:As we addreplicas,space multiplexing latencies are unpredictable
Right:Time-multiplexingandNVIDIAMPS cannot scale past 18 tenants

Space-time multiplexingachieves higher FP32 throughput
comparedtocurrent approaches (space or time only).
Matrix-vector RNN ResNet-18 conv2_2
M = 1024, N = 1, K = 1024 M = 256, N = 128, K = 1152

• Small batches commonin inference leads topoorGPU
utilizationand low resource-efficiency

• We explore spatial andtemporal multiplexingtechniques to
improve GPU utilization

Memory Wall
at 18Models

DNN frameworks dispatch
kernels schematics
to a JIT compiler

JIT compiler optimizes
models for efficiency
and latency requirements

Space

Time

GPU achieves
high utilization and
latency SLO attainment

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM
GPU

fiJ IT


