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Background/Context: Key requirements for GPU kernel multiplexing

* ML inference increasingly important for soft real-time * Runtime performance must be predictable * Space-Time scheduling: Inter-model kernel batching via a
latency-sensitive applications * Multiplexing should increase resource—efficiency software scheduler

Problem: * Models on a single GPU should have inter-tenant isolation * Key idea: provide isolation via software

* Model complexity increases — > latency increases; too
slow for soft—real time applications

* GPU — >more attractive for inference, suffers low

Time-only multiplexing: poor resource-efficiency
* Time-multiplexing: on device scheduler enables interleaved
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