
Background/Context:
• ML inference increasingly important for soft real-time

latency-sensitive applications
Problem:
• Model complexity increases —>latency increases; too

slow for soft-real time applications
• GPU —>more attractive for inference,suffers low

utilization (under latency constraints)
Solution:
• State of the art : temporal multiplexing
• Proposal :multiplexGPUs across multiple models andtime

DynamicSpace-Time Scheduling for GPU Inference
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Motivation: Online inference leads to low GPUs utilization
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As models continue togrow,GPUs are the only way tomeet online inference
latency objectives

GPUs are under-utilizedinonline inference due tosmall batch-sizes
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• Due togrowingDNNmodel complexity,CPUs cannot meet
online inference latency requirements

Key requirements for GPU kernel multiplexing
• Runtime performance must be predictable
• Multiplexingshouldincrease resource-efficiency
• Models ona single GPU shouldhave inter-tenant isolation

Time-only multiplexing: poor resource-efficiency
• Time-multiplexing:ondevice scheduler enables interleaved

executionof multiple CUDAcontexts (noparallel execution)
• Pro:Guaranteedisolationbetweentenants andpredictability
• Con:Sharply degradedthroughput andincreasedlatencies

Space-only multiplexing: poor predictability and isolation
• Spatial-multiplexing:NVIDIAMulti-Process Service to

partitionkernel launches across multiple CUDAStreams
• Pro:Kernels canexecute inparallel
• Con:Unpredictable performance andlackof isolation
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Proposed solution: Space-and-Time multiplexing
• Space-Time scheduling: Inter-model kernel batchingvia a

software scheduler
• Key idea: provide isolation via software

Conclusions: A large opportunity gap in performance
• There still exists a 7xperformance gap inutilization
• We show that space-time multiplexingcandrive upto2.5x-

4.6xthroughput speedups

Contact Paras Jain
paras_ jain@berkeley.edu§

Time-multiplexingsuffers large overheads comparedtosingle-tenancy

10 Replicas 11 Replicas 12 Replicas

Left:As we addreplicas,space multiplexing latencies are unpredictable
Right:Time-multiplexingandNVIDIAMPS cannot scale past 18 tenants

Space-time multiplexingachieves higher FP32 throughput
comparedtocurrent approaches (space or time only).
Matrix-vector RNN ResNet-18 conv2_2
M = 1024, N = 1, K = 1024 M = 256, N = 128, K = 1152

• Small batches commonin inference leads topoorGPU
utilizationand low resource-efficiency

• We explore spatial andtemporal multiplexingtechniques to
improve GPU utilization
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DNN frameworks dispatch
kernels schematics
to a JIT compiler

JIT compiler optimizes
models for efficiency
and latency requirements

Space

Time

GPU achieves
high utilization and
latency SLO attainment

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM

SM
GPU

fiJ IT


