
Synthesizing Zero-loss Low-Power Approximate
DNN Accelerators with Large-Scale Search

Abstract—Approximate computing is a promising way to
improve the power efficiency of deep learning. While recent
work proposes new arithmetic circuits (adders and multipliers)
that consume substantially less power at the cost of computation
errors, these approximate circuits decrease the end-to-end accu-
racy of common models. We propose AutoApprox, a framework
to automatically generate approximate low-power deep learning
accelerators without any accuracy loss. AutoApprox generates a
wide range of approximate ASIC accelerators with a TPUv3
systolic-array template. AutoApprox uses a learned router to
dynamically assign each DNN layer to an approximate systolic
array from a bank of arrays with varying approximation
levels. By tailoring this routing for a specific neural network
architecture, we discover circuit designs without the dramatic
accuracy penalty from prior methods. Moreover, AutoApprox
optimizes for the end-to-end performance, power and area of the
the whole chip and PE mapping rather than simply measuring
the performance of the arithmetic units in isolation. To our
knowledge, our work is the first to demonstrate the effectiveness
of custom-tailored approximate circuits in delivering significant
chip-level energy savings with zero accuracy loss on a large-
scale dataset such as ImageNet. AutoApprox synthesizes a novel
approximate accelerator based on the TPU that reduces end-to-
end power consumption by 3.2% and area by 5.2% at a sub-10nm
process with no degradation in ImageNet validation top-1 and
top-5 accuracy.

Index Terms—approximate computing, deep learning

I. INTRODUCTION

While the continued scaling of neural networks has enabled
higher task accuracy, large models are increasingly energy-
intensive to deploy. For example, model serving constitutes
the majority (up to 80-90%) of deep learning workloads at
Facebook and Amazon AWS [16, 41]. Even small efficiency
improvements in inference accelerators will therefore greatly
reduce the global energy consumption of deep learning.

In systolic-array accelerators, Zimmer et al. [46] report
that over 30% of PE energy is consumed by arithmetic units
that perform basic mathematical operations [38]. The current
practice to improve the power-efficiency of these arithmetic
units is to substitute full-precision floating-point calculations
with low-bit precision quantized operations such as 8-bit
arithmetic [13]. However, low-bit quantization comes at the
cost of degraded accuracy [6]. In fact, the optimal precision
for an architecture varies widely between layers [8].

Emerging work proposes novel approximate circuits that are
dramatically more power-efficient than quantized operators [2].
These approximate operators (multipliers and adders) do not
simply reduce the bit-precision of exact arithmetic but rather
tailor approximations to a specific numerical distribution
observed deployment. Approximate circuits thereby enable

Approximate matrix multiplier bank

error = 10%
pwr = 10%

error = 0%
pwr = 100%

error = 2%
pwr = 70%

Learned
per-layer
router (Z)

Activation buffer
Result of previous layer

Multi-tile
MXU unit

Fig. 1. AutoApprox is a full-stack framework to synthesize approximate
systolic-array accelerators without accuracy loss. We achieve power savings
without loss by co-designing the approximate units on a chip with the software
mapping of layers to systolic arrays. At runtime, this enables dynamic routing
of error-tolerant layers to more approximate cores, thereby yielding significant
power savings.

a better power-accuracy trade-off than quantization which
uniformly approximates all inputs. In Figure 2, we visualize
the error for a single approximate multiplier we study. This
multiplier concentrates error on select sparse values but
consumes 3.61× less energy than an 8-bit exact multiplier.

Prior work in approximate computing for DNNs finds
accuracy drops under errors [43, 33]. Even if accuracy remains
high, these approaches test small-scale models and datasets.
For example, Mrazek et al. [34] approximates just one layer
of an 8-layer ResNet.

How to utilize approximate cores while preserving high
end-task accuracy? We take advantage of dark silicon [15] by
instantiating additional approximate systolic arrays adjacent
to an optional exact systolic array, as shown in Figure 1. At
runtime, we dynamically route error-tolerant layers of a DNN
to an approximate array with low dynamic power consumption.
More sensitive layers are evaluated on the exact systolic array.

We propose AutoApprox, a framework to automatically
synthesize low-power approximate ASIC accelerators with
zero accuracy loss with no retraining required. Using an
modified Edge TPU template, AutoApprox generates a di-
verse set of efficient designs with a reconfigurable routing
array to a bank of systolic arrays containing open-source

0
50

100
150

200
250

0
50

100
150

200
250

0
10
20
30
40
50
60
70
80

Approximation
error (%)

Multiplicand
value

Multiplier
value

Fig. 2. Approximate multipliers trade-off exact computation in order to improve
power-efficiency. The visualized multiplier consumes 3.61x less energy than a
quantized multipler at the cost of 4.2% relative error. By carefully matching
approximate multipliers with each layer in a neural network, we are able to
reduce inference energy usage with zero loss in end-to-end accuracy.

approximate multipliers [32]. By co-optimizing the mapping
of approximate systolic arrays to layers, we avoid accuracy
losses due to homogeneous approximation [8] by custom-
tailoring the approximation for different fine-grained portions
of the computation graph. We also perform proof-of-concept
evaluations on large-scale datasets (including ImageNet) and
models, a first in the domain of functionally-approximate
circuits for deep learning.

We evaluate AutoApprox on the ResNet-50 architecture [18]
trained on the ImageNet dataset [5]. On a sub-10nm process
node, we demonstrate our search methodology is Pareto-optimal
when compared to other baselines. AutoApprox realizes zero
ImageNet validation accuracy loss for ResNet-50 with savings
of up to 3.2% in power consumption and up to 5.2% in area.

We make the following novel contributions:

• We propose AutoApprox, a framework for the design of
zero-loss approximate DNN accelerators.

• We evaluate the accuracy of approximate designs with end-
to-end simulation on significantly larger datasets than prior
work. In order to make end-to-end evaluation tractable,
we accelerate circuit simulation 7200× using caching and
matrix decomposition.

• In order to search the combinatorial space of accelerator
designs (up to O(2268)), we develop a Bayesian opti-
mization solver to efficiently find high-quality solutions.
We demonstrate this framework outperforms competitive
baseline methods.

• We demonstrate AutoApprox improves the power-
efficiency of an TPU-based design without any added area
while maintaining end-to-end accuracy. For the first time
to our knowledge, we evaluate functionally approximate
DNN accelerators on a large-scale dataset and workload
with no accuracy loss.

TABLE I
OVERVIEW OF PRIOR APPROXIMATE COMPUTING METHODS FOR DEEP

NETWORKS WITH COMPARISION OF KEY FEATURES

Largest
dataset

Model
MACs

Retrain
free?

Zero
loss?

Venkataramani et al. [43] CIFAR-10 <1M 7 7
Zhang et al. [45] CALTECH <1M 7 7
Sarwar et al. [37] CIFAR-100 <1M 7 7
Mrazek et al. [34] CIFAR-10 21M 3 7
Mrazek et al. [33] CIFAR-10 120M 3 7

AutoApprox (ours) ImageNet-1k 2B 3 3

II. RELATED WORK

Approximate computing: The slowdown of Moore’s law
and Dennard Scaling forces new deep learning accelerators
to explore new ways to improve power-efficiency through
specialization. Approximate computing promises a new era of
custom approximate circuits with significant improvements
in performance at the cost of degraded quality. Analog
computing [3] offers large potential power savings; however,
these technologies remain difficult to test and deploy as they
are non-deterministic and result in a large accuracy degradation.
We instead focus on functionally-approximate circuits which
unlock power savings by replacing power-intensive segments
of a circuit with inaccurate but simpler components. As an
example, prior work Kim et al. [25] has shown that removing
the carry and overflow logic from a 16-bit adder can yield
a 2.3x more energy-efficient design. There are a variety of
these manually designed approximate adders and multipliers
[28, 36, 26, 30, 21, 27].

We focus on approximate multipliers; Horowitz [19] finds
that multipliers are 7-10× more energy intensive than compara-
ble adders. Mrazek et al. [31] and Sarwar et al. [37] discover an
array of approximate multipliers using search methods such as
Genetic Programming. We synthesize approximate accelerators
using the open-source bank of approximate multipliers from
Mrazek et al. [32].
Approximate deep learning: The resiliency of deep learning
models to noise [4] motivates the design of approximate
hardware for deep learning. Mrazek et al. [34] substitutes
a single layer from an 8-layer ResNet with one utilizing
an approximate multiplier. This work does not consider the
effects of cross-layer approximation. ALWANN [33] searches
for a mapping of layers to one of several fixed approximate
units. However, ALWANN requires a model weight adjustment
step to recover lost accuracy from approximation. Moreover,
this fine-tuning step was not sufficient to avoid an accuracy
degradation (e.g. a cited 0.6% degradation in accuracy for
ResNet-50). Our method require no model fine-tuning step;
therefore, it can be applied to models without modification. We
also evaluate approximate designs on the large-scale ImageNet
dataset; ALWANN evaluates on CIFAR-10 at low-resolution.
Finally, we report real system-wide power numbers. We find
in Figure 6 that it is necessary to evaluate whole system power
rather than multiplier-only energy.

Approximation with compression: A large body of work has
focused on compression techniques [2], including quantization
[13], pruning [14, 9] and low-rank matrix decomposition
[7]. We provide quantization techniques as a baseline for
comparison. Compression methods such as pruning, distillation,
and matrix factorization are orthogonal to our proposed
framework on approximate circuits and our approach can be
readily applied to a compressed neural network.

III. AUTOAPPROX: A DESIGN FRAMEWORK FOR ZERO-LOSS
APPROXIMATE DNN ACCELERATORS

AutoApprox is an automated design framework for systolic-
array based DNN ASIC accelerators. Given an architectural
template design and a set of deep neural network workloads,
AutoApprox generates both a hardware design and a hetero-
geneous mapping of neural network layers to the generated
hardware. AutoApprox is a full-stack framework (see system
diagram in Fig. 3) as it benchmarks candidate designs post-
synthesis and evaluate designs using end-to-end workload
metrics like top-1 accuracy.

Below, we cover key system components: (a) architectural
template, (b) systolic array code generation, (c) circuit sim-
ulation for accuracy estimation and (d) chip performance
estimation. We separately describe the design of circuit search
and the layer mapping in Section IV.

A. TPUv3-based architectural template

We consider a systolic-array based accelerator with a design
based on the TPUv3 [23, 22]. The TPUv3 contains several large
systolic arrays for efficient matrix-matrix multiplication. The
systolic array consists of a two dimensional array of processing
elements (PEs), each containing one or more MAC units and
buffers for input operands and output results. Global activation
and parameter memory is shared across all systolic arrays.
Overall, this design is extremely energy efficient with its usage
of SRAM as each weight memory access is amortized across
hundreds of operations.

As a consequence of thermal limits, power dissipation
largely dominates the total cost of ownership (TCO) of modern
inference chips. Consequently, in many cases die area may be
traded off for designs which improve energy efficiency. Along
these lines, one optimization which has become increasingly
popular as chips entered the dark silicon regime [15] has been
to provision special functional units which are only active for
specific workloads to improve energy efficiency for these cases,
but are otherwise inactive [44].

Our proposed architecture, shown in Figure 1, replaces
a single exact MXU with a bank of several variants of
approximate MXUs. At runtime, inputs are routed to one of
these units based on a precomputed mapping. If we retain
the exact MXU, this strategy can utilze the exact MXU for
non-approximate workloads, thereby guaranteeing correctness
while enabling power-savings for error-tolerant workloads. This
approach does not require major modification to compiler
stacks; it simply requires the addition of a ROUTE operation.

DNN

Architectural
Template

⇤<latexit sha1_base64="aETUmmg4d7Fr1+uPFFVtljBLhmc=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgHsJuFPQY9OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6he9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCG3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpe5flSv2qVL3N4sjDCZzCOXhwDVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD3FPjLI=</latexit>

+
<latexit sha1_base64="HFb7vPGXWshKfdtTiumEDK16me0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGE3CnoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0qyUvctypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3LTjLM=</latexit>

Bank of
approx. MACs

Systolic Array
Generator

Fast Accuracy
Estimation

Power
Estimation

AutoApprox
Chip Search

Layerwise
Mapping

Fig. 3. Our system searches for low-power high-accuracy accelerators custom-
tailored for a specific class of DNNs. At each iteration of search, a new
approximate accelerator design is generated given an architectural template
and a bank of approximate MACs. We estimate power using a commercial
DC Topo tool. The end-to-end accuracy of the systolic array is benchmarked
for a target DNN workload using our fast approximate circuit simulator.

MXUs that are not used in the computation for a specific layer
are turned off to save power.

Arithmetic units in modern ML accelerators account for
a large fraction of total system power while occupying the
minority of the die [46, 22]. Therefore, our approach can
dramatically reduce power consumption without chip area
overhead. Our design is easy to deploy as it neither requires a
new compiler stack nor control architecture. Our approach is
also fully orthogonal to low-bit precision and can be combined
to achieve further efficiency wins.

B. PE and interconnect generation

Given an architectural template and a list of candidate
approximate multipliers, we generate code for the systolic
array and accelerator. The list of approximate multipliers for
the design comes from the AutoApprox ML-guided search
procedure, described in Sec. IV. For each search iteration, a
new set of candidate chips are generated. Code generation
yields both Verilog and C++ implementations.

C. Fast accuracy estimation with Verilator

Both training and inference of large-scale deep neural
networks entail trillions of arithmetic operations. With exact

Fig. 4. By caching circuit evaluations, we accelerate the evaluation of
approximate multipliers by 7200× over direct simulation with Verilator [39].

arithmetic and standard datatypes, this evaluation can be
parallelized on high-throughput GPUs. However, we consider
simulating inexact arithmetic with a custom MAC units.
Direct evaluation of these inexact arithmetic operations is
intractable since existing hardware does not support them.
If we directly evaluate an approximate MAC with the Verilator
circuit simulator [39], a single exact 8-bit multiplication takes
3.75 ± 0.95 microseconds on a high-end server. A single
evaluation of ResNet-50 takes would 4.2 hours at 4 GFLOPs
per 224x224 frame. For the entire ImageNet validation set,
evaluating a single approximate multiplier would take 23 years.

Therefore, we cache calls to Verilator as in prior work [33].
However, Mrazek et al. [33] computes the full 2N×N lookup
table for a N -bit multiplier. This does not scale to wide
bitwidths; with 16-bit inputs, the look-up table would exceed
68 gigabytes. This precludes the use of GPU acceleration.

We find the lookup tables are low-rank and can be dra-
matically compressed without meaningful error using matrix
decomposition. We include a visualization of the principle
components for various approximate multipliers. We precom-
pute the LUT in host CPU memory and then compute the
low-rank eigen decomposition. We compute the approximation
error matrix εi,j = m̃(i, j)− i× j where m̃ is an approximate
multiplier. In order to save memory when storing the N -bit
error matrix ε ∈ R2N×2N , we compute a truncated singular
value decomposition with k � 2N :

ε ≈
k∑

i=1

σiuiv
∗
i

with total memory consumption of O(nk), down from O(n2).
With small k ≤ 50, the total memory consmumption is under
20MB. During evaluation, we recompute the result of the
approximate multiplication of i× j.

We evaluate all results using the ImageNet 2012 dataset [5],
a large-scale image classification dataset. We evaluate using
a 10% sample of the full validation set in order to accelerate
search by approximating the estimated accuracy of the end-to-
end model on a target dataset. Overall, the sampled validation
set contains 5000 images. Ranking models on this sampled
validation set correlates with performance on the full dataset.

Overall, our optimizations result in a 7200× speedup over
direct circuit simulation in Verilator. This strategy also makes
GPU evaluation feasible with future potential for automatic

0 50 100 150 200 250
Principal Component

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Ei

ge
nv

al
ue

Low error (0.1%)
Mid error (4%)
High error (22%)

Fig. 5. Pre-computed outputs for approximate circuits are low-rank. We
compress lookup tables to accelerate inference while reducing memory
requirements from our simulator.

retraining. Accelerated evaluation of the approximate multi-
pliers is critical to the feasibility of our search procedure.
Compressing lookup tables with a low-rank decomposition
should also enable our approach to scale to circuits at wider
bitwidths in the future.

Our approach is complementary with state-of-the-art quan-
tization methods. We perform dynamic range post-training
quantization where weights are statically quantized to eight-
bits prior to inference. During inference, activations are scaled
to the uint8 range of [0, 255] and then quantized. We then
perform dequantization with the procedure from Jacob et al.
[20]:

q
(i,k)
3 =Z3 +MNZ1Z2 −MZ1

N∑
j=1

q
(j,k)
2

−MZ2

N∑
j=1

q
(i,j)
1 +M

N∑
j=1

q
(i,j)
1 q

(j,k)
2

(1)

where q1 represents the weight matrix, q2 represents the
activation matrix, and Z represents respective zero points.
Higher power-savings could be accomplished with a more
advanced quantization method utilizing quantization-aware
training.

D. Performance estimation (power, area, delay)

Prior work primarily considers multilier-only performance
metrics (e.g. power consumption of a single multiplier).
However, we find a lower power multiplier does not necessarily
result in a lower power systolic array in Figure 6. This is due
to the impact of multiplier area on interconnect power; as area
A increases, interconnect wire power must increase by O(

√
A).

We perform all evaluation at a sub-10nm process as this is
a leading technology node using Synopsys’ physically-aware
Design Compiler (Topographical) tool with a commercial PDK.

We assume a single clock domain in our architecture, whose
frequency is dictated by the slowest MXU variant (typically the
’exact’ MXU has the lowest intrinsic performance). As such
during synthesis, the different MXU variants are constrained to

0.130 0.132 0.134 0.136 0.138 0.140 0.142 0.144 0.146
Multiplier-only energy consumption (mJ)

0.90

0.92

0.94

0.96

0.98

1.00
Re

la
tiv

e
sy

st
ol

ic
ar

ra
y

en
er

gy
 c

on
su

m
pt

io
n

Fig. 6. The energy consumed by a single approximate multiplier and the
energy consumed by the whole matrix multiply unit (MXU) are only weakly
correlated. While more efficient multipliers can yield a more efficient chip
overall, only considering the multipliers performance is insufficient when
optimizing for whole chip power.

the slowest clock frequency – this enables some power and area
savings as the synthesis tool is able to select smaller gate sizes
for the approximate MXU variants which have higher intrinsic
performance. In practice, DNN accelerators are TDP-limited
rather than delay limited. Further gains are therefore possible
by overclocking the chip using the thermal savings from the
approximate systolic arrays; we evaluate the feasibility of this
in Fig. 9.

The performance of a particular design also depends on
how the convolution loop nest is mapped onto the array [35].
Mapping is important to ensure that generated accelerators
match what would happen post-synthesis.

IV. CIRCUIT SEARCH AND LAYER MAPPING

In order to preserve high end-to-end task accuracy, we
must carefully consider which portions of a workload are
approximation tolerant. Dong et al. [8] find that the optimal
approximation level changes dramatically between different
layers of a neural network. We jointly consider the task of
selecting approximate units for a chip design concurrently with
the mapping of layers onto said chip’s PEs. By co-designing
the hardware and the mapping, we obtain accelerators that are
custom-tailored to a particular class of neural networks.

However, each of these two subproblems are themselves
challenging combinatorial optimization problems. Together,
they represent a O(KN) search space with K candidate
approximate multiplier designs and N neural network layers
to map; we explore workloads with up to a 2268 search space.
Therefore, random search will not perform well.

We leverage Bayesian optimization with GP bandits [29, 40]
to efficiently discover high-accuracy yet energy-efficient con-
figurations of cross-layer approximate circuits. This approach
improves the sample efficiency of black-box optimization by
modelling the unknown reward function f : x −→ y with a
Gaussian Process (GP).

A. Formalization of the approximate circuit mapping problem

Consider the following optimization problem to find the
lowest power mapping of approximate circuits to deep network

layers:

min
z

N∑
i=1

qᵀi Zi (2a)

s.t. ACC(Z)fu ≥ τ (2b)
AREA(Z) ≤φ (2c)

K∑
j=1

Zij = 1 ∀i ∈ {1, . . . , N} (2d)

Z ∈ {0, 1}N×K (2e)

The decision variable Zi represents a one-hot vector to
denote which of the K approximate circuits are mapped to
layer i. The objective 2a models the total energy consumption
to evaluate a single forward pass where qi ∈ RK

+ represents
a vector containing the energy to evaluate layer i for each of
the K approximate multipliers. Constraints 2d and 2e ensure
that Zi is one-hot and is binary/integral. Constraint 2b defines
a minimum accuracy target for the neural network. Finally,
Constraint 2c constrains the area of the final chip to avoid
degenerate solutions with many similar redundant multipliers.

The accuracy oracle ACC models the effect of cross-layer
interactions from approximations. Given a particular assignment
of approximate multipliers to layers, ACC calculates the
expected accuracy of the model over a specific dataset. As
errors introduced at one layer compound through subsequent
layers, the accuracy oracle is exceptionally challenging to
model. In this work, we evaluate the accuracy of a model over
the validation set.

Unfortunately, this reduces the optimization problem to
a black-box combinatorial optimization problem. To make
matters worse, Bayesian optimization methods fail when
applied to our optimization problem as they demonstrate slow
convergence with a performance similar to random search. It
is well known that Bayesian optimization struggles with high
dimensional states [24], discrete structures [1] and constrained
search spaces [11]. We therefore carefully reformulate our
optimization problem to improve performance with off-the-
shef Bayesian Optimization tools.

B. Calibration of single-layer approximation

To find high-accuracy approximate circuit designs, we
constrain feasible solutions with a minimum validation accuracy
threshold in Constraint 2b. However, the accuracy oracle ACC
is not known. To reduce the complexity of the search space,
we perform an offline study where we only use approximate
multipliers for the target layer and evaluate all other layers
with exact multipliers. This model provides an upper-bound on
the expected accuracy from cross-layer approximation. We then
prune mappings with exceptionally poor expected accuracy.

C. Continuous relaxation of state space

GP bandits are predominantly designed to optimize over
discrete search spaces. Bayesian optimization frameworks
typically support discrete search spaces by embedding them

in a real-valued box [12]. However, this embedding is sample-
inefficient as it does not consider the relation between different
categorical variables. For example, this solution has the
challenge of instability due to quantization error from rounding
continuous predicted variables to the nearest feasible points.

We utilize the estimate of per-layer accuracy degradation
from single layer approximation (as described in the previous
subsection) to compute an ordered set representing the relative
ranking of each approximate multiplier. We define the ordering
as the profiled end-to-end accuracy for approximating a
single layer k with a particular multiplier. However, direct
search with unrounded accuracy results in an unstable relaxed
optimization problem. This results from two approximate
multipliers which achieve similar accuracy, but have very
different power consumption. We therefore relax the linear
order of multipliers to a partially ordered set where ties within
a fixed threshold of accuracy are considered incomparable. We
then resolve a completed linear order by eliminating the least
efficient multiplier in each pair of incomparable multipliers
with similar accuracy.

This procedure derives a linear order of multipliers for each
of the N layers in the neural network. To define distance in
the new dimension after mapping, we apply min-max scaling
to the resulting top-1 accuracy for each multiplier from single-
layer approximation calibration. Given this new formulation
of search space, we define the following cost optimization
objective. For each of N layers, we define a step-wise cost
function Qi : R −→ R to map a real-valued choice of an
approximate multiplier (from 0 to 1) to the energy-consumption
for the closest layer, rounding down.

The relaxed optimization problem is now:

min
z

N∑
i=1

Qi(Zi) (3a)

s.t. ACC(Z) ≥τ (3b)
AREA(Z) ≤φ (3c)

0 ≤ Z ≤1 (3d)

Z ∈RN (3e)

D. Unconstrained optimization with barrier functions

While recent work has begun to explore multi-objective
optimization using Bayesian optimization, these approaches
are generally significantly less sample-efficient than single-
objective optimizers. Ideally, we wish to explore the two-
dimensional pareto frontier between accuracy and energy
consumption. In practice, we find it useful to also limit the
area of the final systolic array to avoid degenerate solutions
where redundant approximate multipliers with similar accuracy
are instantiated on a single chip.

We can utilize the barrier method [10] to remove con-
straints 3b and 3c. Barrier methods replace each constraint
of form x ≤ b with a penalty in the objective function
B(x, b) = − log(b − x) or B(x, b) = ex−b. As x approaches

the constraint b, the penalty trends to ∞. Utilizing a barrier
method, we express our objective as:

N∑
i=1

Qi(Zi) + α1B(τ,ACC(Z)) + α2B(AREA(Z), φ)

This objective now allows removal of constraints 3b and
3c. We leverage the exponential barrier function as it allows
for soft constraint violations. For the accuracy term, we use a
target accuracy τ = 0.68 and weight α1 = 8. For the area term,
we use a target area percentage (including exact multiplier) of
φ = 400% and a scale α2 = 1.2.

V. EXPERIMENTS

We focus our evaluation on the ImageNet dataset [5], a
large-scale dataset for image classification. ImageNet is a
challenging dataset with 1M training images and 1000 classes,
where each image is 224× 224. Prior work has predominantly
evaluated on the CIFAR-10 dataset. However, CIFAR-10 is a
small dataset and not representative of modern computer vision
workloads. Specifically, CIFAR-10 contains small 32 × 32
images, and only 10 classes that are well-separated. Because of
this, approximation during neural network inference is expected
to result in little change in overall class assignments.

We perform cross-layer search experiments using a 10%
sample of the ImageNet validation set by evaluating 5 full-
resolution images per class. This accelerates search without
significantly impacting accuracy. On the validation set, the
original model achieves 74.0% top-1 accuracy and 92.5% top-5
accuracy, while an 8-bit post-training quantized model achieves
72.1% top-1 accuracy and 90.7% top-5 accuracy.

We evaluate power savings and accuracy with the ResNet-
50 architecture [17]. This model contains many interesting
features that may affect approximation sensitivity, such as
residual connections and batch normalization. As ResNet-
50 is a deep network with many layers, it is a compelling
target for studying cross-layer approximations and represents
a practical application that is widely deployed today on
production accelerators.

In searching for competitive architectures, we evaluate
approximate multiplier variants from prior work [32]. We
synthesized a total of 36 16 × 16 systolic array tiles for the
different approximate multiplier variants in a commercial sub-
10nm process using Synopsys’ physical-aware Design Compiler
(Topographical) tool, which provided performance, power,
and area estimates. Evaluation of power, performance, and
area of the systolic array – and not the base multipliers – is
necessary to properly account for circuit and wiring overheads
which temper some of the gains we would have observed if
we only considered multiplier-level power, performance, and
area. Finally, we assume a single clock domain shared by all
approximate systolic arrays in our architecture, and as such
scale power estimates for each approximate systolic array to
the common clock frequency.

TABLE II
PARETO-OPTIMAL RESULTS FOR POWER, AREA AND ACCURACY ON IMAGENET VALIDATION SET FOR RESNET-50 WITH A SUB-10nm SYSTOLIC ARRAY

HARDWARE ARCHITECTURE. POWER AND AREA ARE REPORTED RELATIVE TO THE ORIGINAL EXACT CIRCUIT (1.0× REPRESENTS THE EXACT QUANTIZED
CHIP). AUTOAPPROX FINDS APPROXIMATE CIRCUITS THAT REDUCE ENERGY CONSUMPTION BY 3.2% AND AREA BY 5.2% WITH NO ACCURACY LOSS.

Hardware design Total chip energy
(relative to exact)

Total chip area
(exact + approx) Top-1 accuracy Top-5 accuracy

Exact 8-bit MXU 1.0× 1.0× 72.1% 90.7%

Greedy layerwise search 0.976× 1.281× 71.2% 90.3%
Google Vizier [12] 0.969× 2.712× 65.82% 86.2%

AutoApprox-S (power optimized) 0.939× 1.844× 66.5% 87.42%
AutoApprox-L (balanced) 0.968× 0.948× 72.5% 90.7%
AutoApprox-XL (accuracy optimized) 1.024× 1.189× 73.1% 91.1%

0.90 0.92 0.94 0.96 0.98 1.00
Normalized power consumption

0

10

20

30

40

50

60

70

80

To
p-

1
ac

cu
ra

cy
 (%

)

AutoApprox
Discrete BO
Single layer grid

Fig. 7. AutoApprox finds more accurate approximate mappings at every
power level relative to baseline approaches. The baseline Bayesian optimization
framework fails to achieve zero-accuracy loss configurations while the grid
search is unable to discover low-power designs.

VI. EVALUATION

A. How much power-savings can approximation achieve with
minimal-to-no accuracy loss?

Since approximate arithmetic circuits can be integrated into
hardware alongside quantization, we study how much additional
power is saved beyond quantization and how much, if any,
accuracy is lost from approximation. We benchmark results
on the downsampled ImageNet validation set at full resolution
with the ResNet-50 architecture. We compare against two
key baselines: (1) a circuit using an exact 8-bit multiplier,
(2) an exhaustive greedy baseline mapping a single layer
to a single approximate multiplier, similar to the method
proposed by Mrazek et al. [34] and (3) baseline search with the
commercial black-box optimization toolkit Google Vizier [12].
We consider the Vizier baseline to perform similarly to Mrazek
et al. [33] as both rely on combinatorial black-box optimization.
For AutoApprox, we report three pareto-optimal designs:
AutoApprox-S, AutoApprox-L and AutoApprox-XL. These
configurations represent power optimized, a balanced and an
accuracy optimized configuration.

We compare relative power consumption and area as well
as validation accuracy in Table II. With no accuracy loss

Im
ag

eN
et

 v
al

id
at

io
n

to
p-

1
ac

cu
ra

cy

00 01 02 03 04 05 06 07

08 09 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51

Mean Relative Error for multiplier

52

Fig. 8. Ablation of per-layer error tolerance for ResNet-50. Some layers are
exceptionally robust to approximation (e.g. layer 31) but others are sensitive
(e.g. layer 1). We utilize this sensitivity to compute a continuous relaxation of
the discrete mapping search space.

beyond the exact 8-bit circuit, AutoApprox discovers a circuit,
labelled AutoApprox-L, with 3.2% lower energy consumption
and 5.2% less circuit area. We also discover a lower-power ap-
proximate circuit with 6.1% less energy consumption, labelled
AutoApprox-S; however, it degrades ImageNet validation top-1
and top-5 accuracy by 5.6% and 3.3% respectively.

Surprisingly, AutoApprox-XL discovers a configuration with
1.0% higher top-1 accuracy. We believe that approximations
introduced by the custom-tailored circuit introduce regulariza-
tion, similar to how pruning can improve generalization in the
Lottery Ticket Hypothesis [9].

B. How does AutoApprox compare with other search methods?

We evaluate the energy-efficiency of our approximate circuit
mapping procedures by examining the final Pareto-optimal
trade-off curve between power and accuracy at the end of
search. We run the baselines for a similar period of time
(unless the method has a constrained search space). In addition
to the greedy single layer heuristic, we evaluate a competitive
black-box optimization framework [12].

Figure 7 compares the final power-accuracy Pareto curves
for each method. AutoApprox discovers a higher accuracy

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Time during single inference execution

0.94

0.96

0.98

1.00
No

rm
al

ize
d

te
m

pe
ra

tu
re

AutoApprox
Exact hardware

Fig. 9. The optimal design from AutoApprox generates less heat than a
comparable exact circuit. Approximation enables TDP-limited chip designs to
achieve higher performance via overclocking.

mapping than all baselines at every power consumption level.
AutoApprox is able to maintain near-exact accuracy for many
configurations. Moreover, AutoApprox is the only method to
discover low-power chip designs. Greedy layerwise search is
able to maintain high accuracies, but cannot discover low-power
cross-layer approximate designs. Alternatively, the discrete
Bayesian optimizer suffers a considerable accuracy loss due to
the complexity of its search space. AutoApprox is able to find
higher-quality solutions in significantly fewer iterations than
baseline methods.

C. Ablation: error tolerance across ResNet-50 layers

Figure 8 displays the ImageNet validation set accuracy
when substituting a single convolution (out of 52) with an
approximate multiplier. On the horizontal axis, we rank each
multipliers by the multiplier’s expected mean relative error
over a uniform distribution of input values. Some layers are
exceptionally error tolerant (e.g. 31, 35 or 41). As more
approximate multipliers are used, end-to-end accuracy does not
drop significantly. However, certain layers (e.g. 1, 4 or 49) suffer
dramatic accuracy drops as more approximate multipliers are
used. This confirms that a layer-by-layer tuning approach must
be used and that no one multiplier can be used homogenously
across all layers of the neural network.

D. Ablation: Thermal behavior of the synthesized chip

In order to understand the characteristics of approximate
circuits, in Figure 9, we take a single Pareto-optimal design and
measure the normalized temperature of the chip using a vendor
toolkit at a sub-10nm process node. While the discovered
circuit had considerable power savings, it also operates at a
significantly lower temperature when compared with exact
hardware. This result opens the future opportunity to evaluate
dynamically overclocking approximate circuits.

E. Discussion

Overall, AutoApprox is effective at discovering power-
efficient approximate accelerators without accuracy loss. The
results generalize to large-scale datasets and models. Moveover,
this approach required no modification to the model’s parame-
ters and few changes to the runtime compiler stack. By routing

layers approximate cores at runtime, we preserve the ability to
run legacy workloads that may not be error tolerant.

Approximate computing has great potential to make a large
dent in the efficiency of DNN accelerators. Conventional
wisdom holds that approximation must result in a drop
in accuracy. Surprisingly, we find the opposite; in some
cases, custom-tailored approximations can increase accuracy.
Optimizing inference accelerators by just a few percent (as
found in our work) could have a large impact on cost and
power consumption as model serving workloads far exceed
training workloads in datacenters.

1) Other hardware architectures?: How well can we expect
the results in this paper to generalize to novel hardware archi-
tectures? We leverage specific properties of the systolic array
that simplify control via course-grained routing. Alternative
architectures may require more complicated mechanisms to
reconfigure the accuracy of the accelerator. However, as our
methodology is fairly general, we expect the approach to
generalize to new architectural templates.

2) Generalization to other DNNs?: How well will
AutoApprox perform on novel architectures and datasets?
We evaluated ResNet-50 as it is a standard benchmark for
approximate DNN accelerators. However, nothing in our design
is specific to convolutional neural networks. For example, the
approximate systolic array design can be applied to improve the
efficiency of the matrix multiplications in the Transformer [42]
architecture. It is likely that the optimal set of approximate
multipliers will be different between architectural families.

3) Future work: Our results could be further improved
by retraining models to adapt to the chosen approximate
circuits. In Figure 2, we see that approximate multiplier errors
concentrate on specific inputs. Retraining would shift the
distribution of DNN activations away from these error-prone
values. Our results also considered a small library of open-
source approximate circuits. Further gains could be realized by
designing a novel approximate multiplier alongside mapping.

VII. CONCLUSION

We provide a framework, AutoApprox, that leverages ap-
proximate circuit design to generate energy-efficient inference
circuits without any accuracy loss. Using a TPUv3 template
design, we discover an efficient approximate accelerator that
saves up to 3.2% of chip power consumption at zero-loss.
By dynamically routing each layer of a neural network at
runtime, we ensure only error-tolerant layers are routed to an
approximate systolic array. Moreover, AutoApprox requires
no major changes to the compiler stack thereby making
deployment straightforward. We develop an scalable method
that efficiently searches over the space of possible mappings
of circuits to model layers with the goal of optimizing for
energy performance and maintaining the end-to-end model
accuracy. We demonstrate that we can substantially reduce the
energy consumed on ImageNet dataset inference, without any
degradation in accuracy. We hope this approach will enable
improved efficiency for datacenter and edge inference.

REFERENCES

[1] R. Baptista and M. Poloczek. Bayesian optimization of
combinatorial structures. 2018.

[2] C. Chen, J. Choi, K. Gopalakrishnan, V. Srinivasan, and
S. Venkataramani. Exploiting approximate computing for deep
learning acceleration. In 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), 2018.

[3] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie. Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory. ACM
SIGARCH Computer Architecture News, 2016.

[4] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan.
Analysis and characterization of inherent application resilience
for approximate computing. In DAC, 2013.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
Imagenet: A large-scale hierarchical image database. In CVPR,
2009.

[6] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie. Model compression
and hardware acceleration for neural networks: A comprehensive
survey. Proceedings of the IEEE, 2020.

[7] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus.
Exploiting linear structure within convolutional networks for
efficient evaluation. In NeurIPS, 2014.

[8] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer.
Hawq: Hessian aware quantization of neural networks with
mixed-precision. In CVPR, pages 293–302, 2019.

[9] J. Frankle and M. Carbin. The lottery ticket hypothesis: Finding
sparse, trainable neural networks, 2019.

[10] R. Frisch. The multiplex method for linear programming. The
Indian Journal of Statistics (1933-1960), 1957.

[11] J. Gardner, M. Kusner, K. Weinberger, J. Cunningham, et al.
Bayesian optimization with inequality constraints. In ICML,
pages 937–945, 2014.

[12] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and
D. Sculley. Google Vizier: A service for black-box optimization.
In SIGKDD, 2017.

[13] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan.
Deep learning with limited numerical precision. In ICML, 2015.

[14] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights
and connections for efficient neural networks. In NeurIPS, 2015.

[15] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki. Toward
dark silicon in servers. IEEE Micro, 2011.

[16] K. Hazelwood et al. Applied machine learning at facebook: A
datacenter infrastructure perspective. In HPCA, 2018.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770–778, 2016.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In CVPR, pages 770–778, 2016.

[19] M. Horowitz. Computing’s energy problem (and what we can
do about it).

[20] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,
H. Adam, and D. Kalenichenko. Quantization and training of
neural networks for efficient integer-arithmetic-only inference.
In CVPR, pages 2704–2713, 2018.

[21] H. Jiang, J. Han, F. Qiao, and F. Lombardi. Approximate radix-8
booth multipliers for low-power and high-performance operation.
IEEE Transactions on Computers, 2016.

[22] N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon,
C. Young, and D. Patterson. A domain-specific supercomputer
for training deep neural networks. Commun. ACM, 2020.

[23] N. P. Jouppi et al. In-datacenter performance analysis of a tensor
processing unit. In ISCA, 2017.

[24] K. Kandasamy, J. Schneider, and B. Póczos. High dimensional
bayesian optimisation and bandits via additive models. In ICML,
2015.

[25] Y. Kim, Y. Zhang, and P. Li. An energy efficient approximate

adder with carry skip for error resilient neuromorphic vlsi
systems. In 2013 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2013.

[26] C. Lin and I. Lin. High accuracy approximate multiplier with
error correction. In ICCD, 2013.

[27] Z. Liu, A. Yazdanbakhsh, T. Park, H. Esmaeilzadeh, and N. S.
Kim. Simul: An algorithm-driven approximate multiplier design
for machine learning. Micro, 2018.

[28] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas.
Bio-inspired imprecise computational blocks for efficient vlsi
implementation of soft-computing applications. Trans. Cir. Sys.
Part I, 2010.

[29] J. Mockus and L. Mockus. Bayesian approach to global
optimization and application to multiobjective and constrained
problems. Journal of Optimization Theory and Applications,
1991.

[30] A. Momeni, J. Han, P. Montuschi, and F. Lombardi. Design and
analysis of approximate compressors for multiplication. IEEE
Transactions on Computers, 2015.

[31] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy.
Design of power-efficient approximate multipliers for approxi-
mate artificial neural networks. In ICCAD, 2016.

[32] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina. Evoap-
proxsb: Library of approximate adders and multipliers for circuit
design and benchmarking of approximation methods. In DATE,
2017.

[33] V. Mrazek, Z. Vasicek, L. Sekanina, M. A. Hanif, and
M. Shafique. Alwann: Automatic layer-wise approximation
of deep neural network accelerators without retraining. ICCAD,
2019.

[34] V. Mrazek, L. Sekanina, and Z. Vasicek. Using libraries of
approximate circuits in design of hardware accelerators of deep
neural networks. In AICAS 2020, pages 243–247, 2020.

[35] A. Parashar et al. Timeloop: A systematic approach to dnn
accelerator evaluation. In ISPASS, 2019.

[36] K. M. Reddy, Y. B. Nithin Kumar, D. Sharma, and M. H.
Vasantha. Low power, high speed error tolerant multiplier using
approximate adders. In VDAT, 2015.

[37] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan, and
K. Roy. Energy-efficient neural computing with approximate
multipliers. J. Emerg. Technol. Comput. Syst., 2018.

[38] Y. S. Shao et al. Simba: Scaling deep-learning inference with
multi-chip-module-based architecture. In MICRO, 2019.

[39] W. Snyder et al. Verilator, 2001. URL https://www.veripool.org/
wiki/verilator.

[40] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian
process optimization in the bandit setting: No regret and
experimental design. arXiv, 2009.

[41] R. Vasudevan, D. Davydenko, and S. Skalicky. Model serving
with amazon elastic inference, 2019.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need,
2017.

[43] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan.
Axnn: Energy-efficient neuromorphic systems using approximate
computing. In ISLPED, 2014.

[44] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor. Conservation
cores: Reducing the energy of mature computations. ASPLOS,
2010.

[45] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu. Approxann: An
approximate computing framework for artificial neural network.
In DATE, 2015.

[46] B. Zimmer et al. A 0.32–128 tops, scalable multi-chip-module-
based deep neural network inference accelerator with ground-
referenced signaling in 16 nm. ISSCC, 2020.

https://www.veripool.org/wiki/verilator
https://www.veripool.org/wiki/verilator

	Introduction
	Related Work
	AutoApprox: a design framework for zero-loss approximate dnn accelerators
	TPUv3-based architectural template
	PE and interconnect generation
	Fast accuracy estimation with Verilator
	Performance estimation (power, area, delay)

	Circuit search and layer mapping
	Formalization of the approximate circuit mapping problem
	Calibration of single-layer approximation
	Continuous relaxation of state space
	Unconstrained optimization with barrier functions

	Experiments
	Evaluation
	How much power-savings can approximation achieve with minimal-to-no accuracy loss?
	How does AutoApprox compare with other search methods?
	Ablation: error tolerance across ResNet-50 layers
	Ablation: Thermal behavior of the synthesized chip
	Discussion
	Other hardware architectures?
	Generalization to other DNNs?
	Future work

	Conclusion

