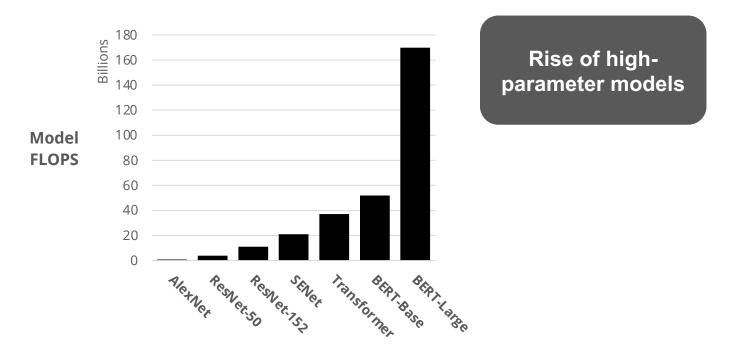
Learning to Design Accurate Deep Learning Accelerators with Inaccurate Multipliers

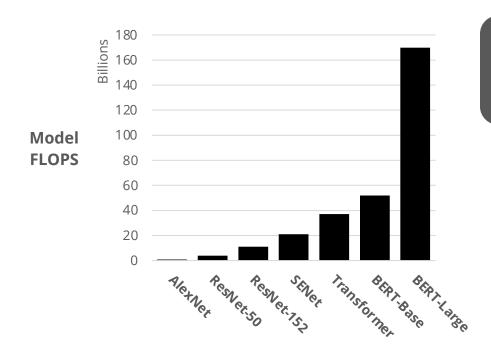
Paras Jain²

with Safeen Huda¹, Martin Maas¹, Joseph Gonzalez², Ion Stoica² and Azalia Mirhoseini¹

Deep learning's inference energy problem

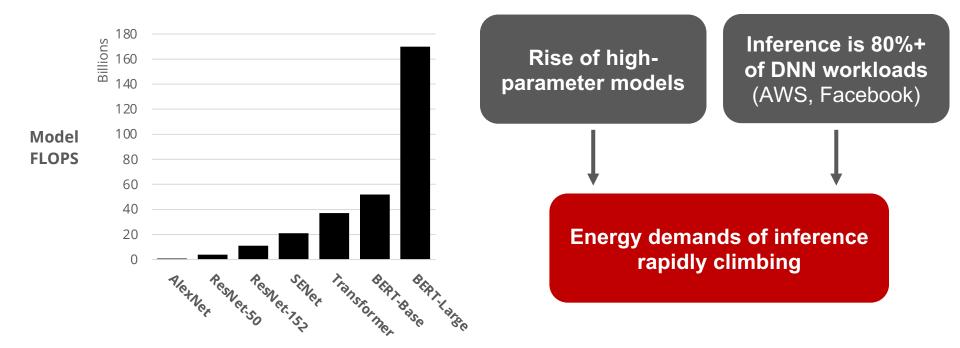


Deep learning's inference energy problem



Rise of highparameter models Inference is 80%+ of DNN workloads (AWS, Facebook)

Deep learning's inference energy problem



Approximate computing as a new way to save power on DNN accelerators

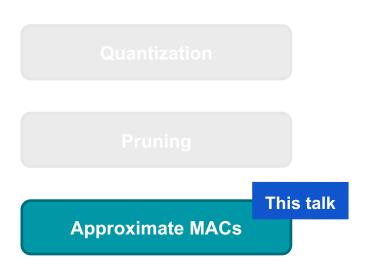
Quantization

Pruning

Approximate MACs

 Deep learning models are tolerant to approximations like quantization

Approximate computing as a new way to save power on DNN accelerators



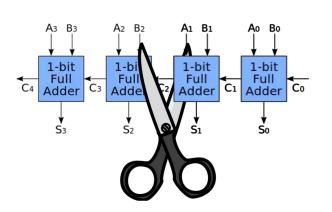
- Deep learning models are tolerant to approximations like quantization
- We study: emerging approximate multipliers + adders to trade-off accuracy for power
- Complementary approach to quantization and sparsity
- Challenge: how to maintain high accuracy under approximation?

Approximate computing as a new way to save power on DNN accelerators

How to achieve power savings with an approximate inference accelerator without any accuracy loss on a large-scale dataset?

Approximate MACs

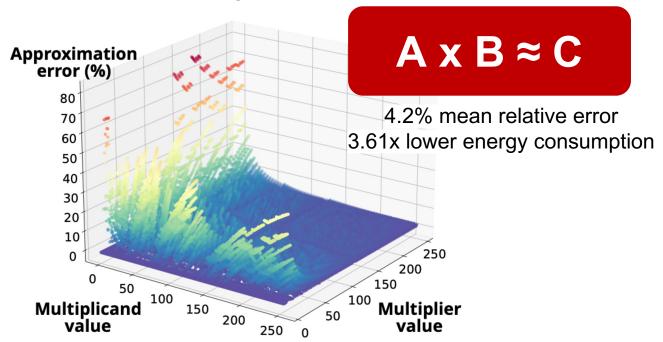
Background: approximate MACs to trade-off power and accuracy



- Parts of fully-accurate circuits can be removed to trade-off accuracy for better power efficiency
- Example: truncate the carry chain in an 8-bit adder
- Extensive prior work to produce such multipliers/adders [1] [2] [survey].
- Functionally approximate circuits only

^{2]} https://ieeexplore.ieee.org/abstract/document/7926993

Background: approximate MACs to trade-off power and accuracy



V. Mrazek, R. Hrbacek, Z. Vasicek and L. Sekanina, EvoApprox8b: Library of approximate adders and multipliers for circuit design and benchmarking of approximation methods. Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017

Challenge: Prior designs with approximate MACs degrade accuracy

	Largest dataset	Model MACs	Retrain free?	Zero loss?
Venkataramani et al. [43]	CIFAR-10	<1M	X	Х
Zhang et al. [45]	CALTECH	<1M	X	Х
Sarwar et al. [37]	CIFAR-100	<1M	X	X
Mrazek et al. [34]	CIFAR-10	21M	✓	X
Mrazek et al. [33]	CIFAR-10	120M	✓	×

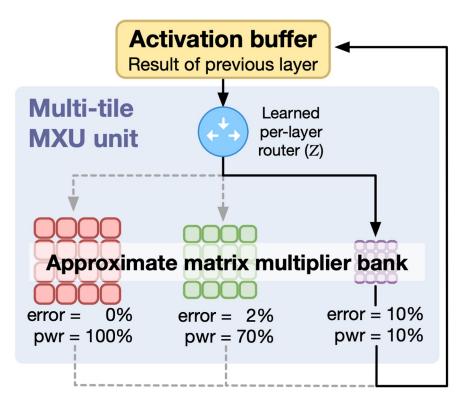
Must incur accuracy penalty!

Evaluated on CIFAR w/ small models

This work: We show it is possible to use approximation and maintain accuracy

	Largest dataset	Model MACs	Retrain free?	Zero loss?	
Venkataramani et al. [43]	CIFAR-10	<1M	Х	Х	
Zhang et al. [45]	CALTECH	<1M	×	Х	
Sarwar et al. [37]	CIFAR-100	<1M	×	Х	
Mrazek et al. [34]	CIFAR-10	21M	✓	X	
Mrazek et al. [33]	CIFAR-10	120M	\checkmark	X	
AutoApprox (ours)	ImageNet-1k	2B	✓	1	10 ³ more data
					(bytes)

Key Insight: Add additional approximate units next to exact units as a low-power "fast-path"



At inference, router selects one systolic array

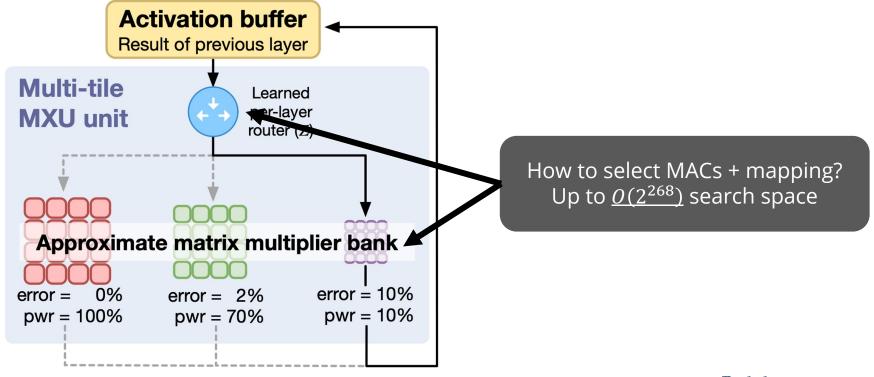
Error-tolerant workloads:

→ Save power by using approximate MAC

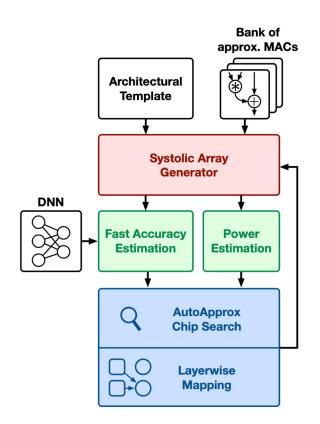
Sensitive workloads:

→ Maintain accuracy by using exact MAC

Key Insight: Add additional approximate units next to exact units as a low-power "fast-path"



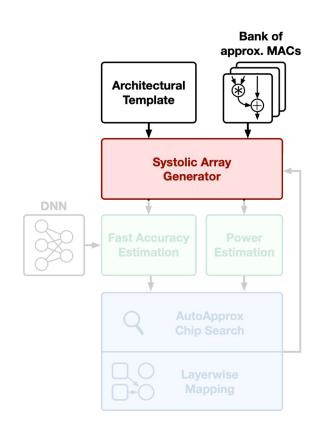
AutoApprox: full-stack framework to design zero-loss approximate accelerators



Contributions:

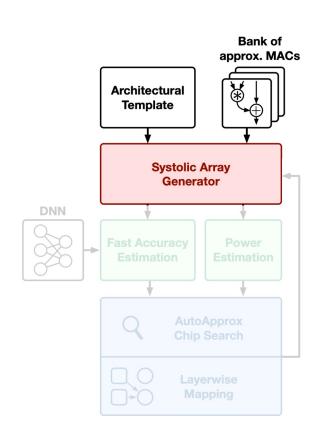
- 1. Approx. TPU architecture w/ exact fallback
- **2. Fast e2e accuracy simulation:** 7000x simulation speedup over Verilator
- **3. ML-guided search:** Novel Bayesian optimizer for large combinatorial space of circuits

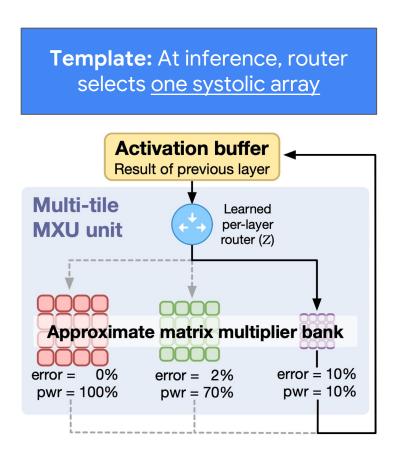
Candidate hardware generation



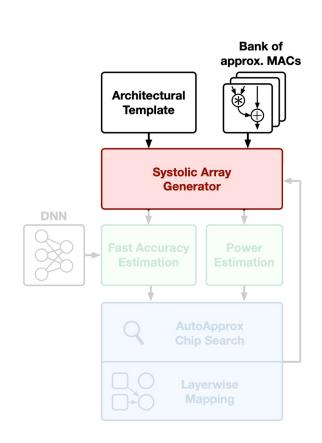
- Systolic array generator instantiates diverse set of approximate TPU designs
- Architectural template: TPU w/ sister approximate matrix multipliers
- Approximate MAC bank: 36 MACs from prior work, can be augmented w/ new designs

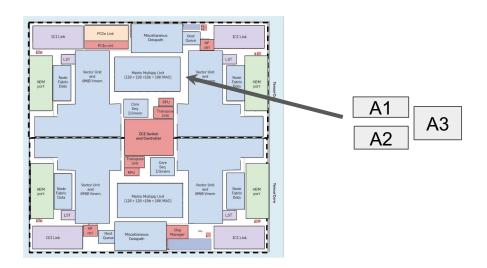
Candidate hardware generation





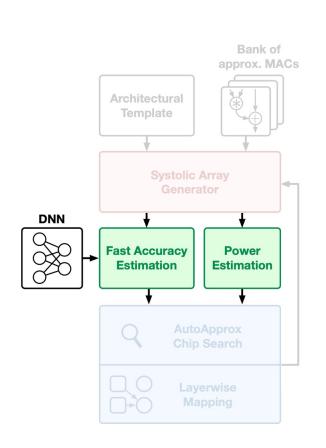
Candidate hardware generation



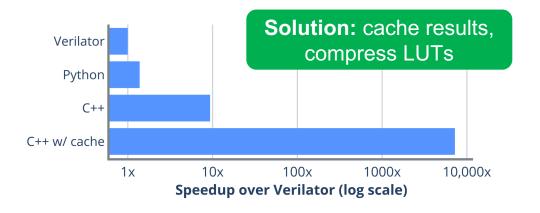


- Systolic array generator instantiates diverse set of approximate TPU designs
- Architectural template: TPU w/ sister approximate matrix multipliers
- Approximate MAC bank: 36 MACs from prior work, can be augmented w/ new designs

Scoring candidates by accuracy and PPA

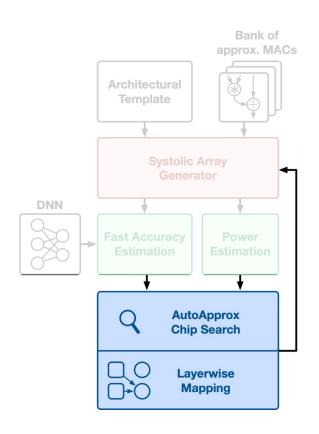


Evaluating single inference with Verilator takes 4.2hrs



ML-guided search

with pruning, continuous relaxation



$$\min_{Z} \quad \sum_{i=1}^{N} q_{i}^{\mathsf{T}} Z_{i}$$
s.t.
$$\operatorname{ACC}(Z) \geq \tau$$

$$\operatorname{AREA}(Z) \leq \phi$$

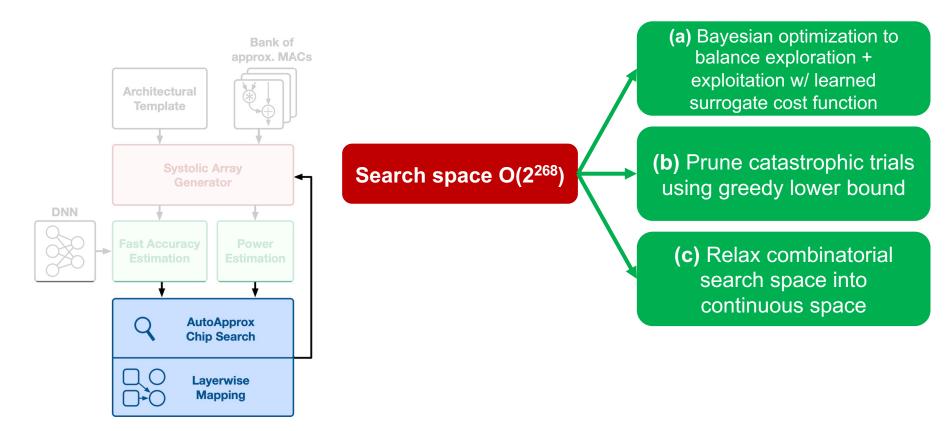
$$\sum_{j=1}^{K} Z_{ij} = 1 \quad \forall i \in \{1, \dots, N\}$$

$$Z \in \{0, 1\}^{N \times K}$$

Search space O(2²⁶⁸)

ML-guided search

with pruning, continuous relaxation



Results: Evaluating AutoApprox on large-scale workload + dataset

Workload: ResNet-50 on ImageNet-1k

Evaluating routed TPU design w/ approximate cores

Energy, perf. and area evaluated at <10nm PDK

Hardware design	Total chip energy (relative to exact)	Total chip area (exact + approx)	Top-1 accuracy	Top-5 accuracy
Exact 8-bit MXU	1.0×	1.0×	72.1%	90.7%

Results: Evaluating AutoApprox on large-scale workload + dataset

Workload: ResNet-50 on ImageNet-1k

Evaluating routed TPU design w/ approximate cores

Energy, perf. and area evaluated at <10nm PDK

Hardware design	Total chip energy (relative to exact)	Total chip area (exact + approx)	Top-1 accuracy	Top-5 accuracy
Exact 8-bit MXU	1.0×	1.0×	72.1%	90.7%
Greedy layerwise search Google Vizier [12]	0.976× 0.969×	1.281× 2.712×	71.2% 65.82%	90.3% 86.2%

1%-6% lower accuracy than baseline

Results: Evaluating AutoApprox on large-scale workload + dataset

Workload: ResNet-50 on ImageNet-1k

Evaluating routed TPU design w/ approximate cores

Energy, perf. and area evaluated at <10nm PDK

Hardware design	Total chip energy (relative to exact)	Total chip area (exact + approx)	Top-1 accuracy	Top-5 accuracy
Exact 8-bit MXU	1.0×	1.0×	72.1%	90.7%
Greedy layerwise search Google Vizier [12]	0.976×	1.281×	71.2%	90.3%
	0.969×	2.712×	65.82%	86.2%
AutoApprox-S (power optimized) AutoApprox-L (balanced)	0.939×	1.844×	66.5%	87.42%
	0.968×	0.948×	72.5%	90.7%

3.2% - 6.1% energy savings!

Results: Significant energy savings for TPU with zero accuracy loss

Workload: ResNet-50 on ImageNet-1k

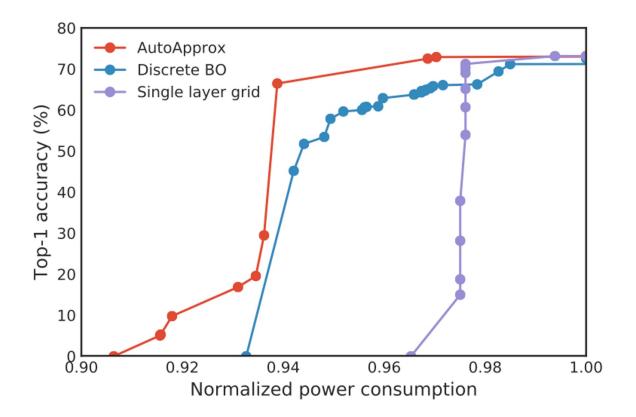
Evaluating routed TPU design w/ approximate cores

Energy, perf. and area evaluated at <10nm PDK

Hardware design	Total chip energy (relative to exact)	Total chip area (exact + approx)	Top-1 accuracy	Top-5 accuracy
Exact 8-bit MXU	1.0×	1.0×	72.1%	90.7%
Greedy layerwise search Google Vizier [12]	0.976×	1.281×	71.2%	90.3%
	0.969×	2.712×	65.82%	86.2%
AutoApprox-S (power optimized) AutoApprox-L (balanced) AutoApprox-XL (accuracy optimized)	0.939×	1.844×	66.5%	87.42%
	0.968×	0.948×	72.5%	90.7%
	1.024×	1.189×	73.1%	91.1%

Improve accuracy by 1%

Results: AutoApprox system pareto optimal to baselines



Synthesizing Zero-loss Low-Power Approximate DNN Accelerators with Large-Scale Search

Please reach out! parasj@berkeley.edu

Paras Jain, Safeen Huda, Martin Maas, Joseph Gonzalez, Ion Stoica, Azalia Mirhoseini

Problem: Leverage DNN tolerance to approximation to improve TPU perf/TCO via approximately accurate circuits.

Approach: Pack heterogenous approximate MXUs as sidekicks to a fallback exact MXU.

Contributions:

- Approx. TPU architecture w/ exact fallback
- Fast e2e accuracy simulation
- ML-guided search

Key results:

- Save up to 6% MXU power end-to-end on real TPU design (<10nm)
- Method significantly outperforms competitive baselines
- Opens new orthogonal avenue for chip efficiency beyond quantization + sparsity

