
Contrastive Code Representation Learning

Contrastive Code
Representation Learning
Paras Jain*, Ajay Jain*, Tianjun Zhang,
Pieter Abbeel, Joseph E. Gonzalez, Ion Stoica

UC Berkeley RISELab

EMNLP 2021

parasj.github.io/contracode

Contrastive Code Representation Learning

Machine-aided programming tools are ubiquitous

Security analysis

Autocompletion

2

Code search

Program synthesis

Contrastive Code Representation Learning

SOTA tools are increasingly learning based

3

Deep code search
CodeSearchNet [Husain et al. 2019]
CodeBERT [Feng et al. 2020]

Code completion
[Raychev et al. 2014]
[Svyatkovskiy et al. 2019]
OpenAI Codex [Chen et al. 2021]

Program synthesis
RobustFill [Devlin et al. 2016]
AutoPandas [Bavishi et al. 2019]

DreamCoder [Ellis et al. 2020]
[Austin et al. 2021]

Automated bug fixing
GenProg [Goues et al. 2011]
Getafix [Bader et al. 2019]
CuBERT [Kanade et al. 2019]
DrRepair [Yasunaga and Liang 2020]

Code summarization
[Allamanis et al. 2016]
[Iyer et al. 2016]
[Fernandes et al. 2018]

Contrastive Code Representation Learning

Current model: pretrain language models over GitHub

4

Flatten program as text

RoBERTa
(Liu et al. 2019)

BERT
(Devlin et al. 2018)

OpenAI GPT-3
(Brown et al. 2020)

OpenAI Codex
(Chen et al. 2021)

Contrastive Code Representation Learning

Challenge: many ways to express single program!

5

function x(maxLine) {
 const section = {
 text: '',
 data
 };

 for (; i < maxLine; i += 1) {
 section.text += `${lines[i]}\n`;
 }

 if (section) {
 parsingCtx.sections.push(section);
 }
}

Original JavaScript method

function x(t) {
 const n = {
 'text': '',
 'data': data
 };
 for (;i < t; i += 1) {
 n.text += lines[i] + '\n';
 }
 n && parsingCtx.sections.push(n);
}

Renamed variables, explicit object style,
explicit concatenation, inline conditional

function x(t){const
n={'text':'','data':data};for(;i<t;i+=
1)n.text+=lines[i]
+'\n';n&&parsingCtx.sections.push(n)}

Mangled source with
compressed whitespace

A single block of code can have many possible rewrites w/ equivalent semantics!

Contrastive Code Representation Learning

Challenge: many ways to express single program!

6

function x(maxLine) {
 const section = {
 text: '',
 data
 };

 for (; i < maxLine; i += 1) {
 section.text += `${lines[i]}\n`;
 }

 if (section) {
 parsingCtx.sections.push(section);
 }
}

Original JavaScript method

function x(t) {
 const n = {
 'text': '',
 'data': data
 };
 for (;i < t; i += 1) {
 n.text += lines[i] + '\n';
 }
 n && parsingCtx.sections.push(n);
}

Renamed variables, explicit object style,
explicit concatenation, inline conditional

function x(t){const
n={'text':'','data':data};for(;i<t;i+=
1)n.text+=lines[i]
+'\n';n&&parsingCtx.sections.push(n)}

Mangled source with
compressed whitespace

A single block of code can have many possible rewrites w/ equivalent semantics!
Prior work discusses the

sensitivity of code representations to
semantics-preserving transformations!

Contrastive Code Representation Learning

Challenge: pre-trained language models
are not robust to code transforms!

7

Pretrained LM does not
understand code functionality

Code clone detection accuracy
under label-preserving edits

Random classifier = 50% AP

Contrastive Code Representation Learning

Challenge: pre-trained language models
are not robust to code transforms!

8

Pretrained LM does not
understand code functionality

Random classifier = 50% AP

RQ: How to learn robust
representations of
code functionality?

Contrastive Code Representation Learning

Key Result: ContraCode learns robust
representations of source code.

9

Random classifier = 50% AP

Code clone detection accuracy
under label-preserving edits

Contrastive Code Representation Learning

Key Result: Robust representations translate to
improved accuracy on natural code tasks.

10

Code summarization
+0.38 F1

Type prediction
+2.4% acc@1, +2.8% acc@5

Zero-shot Code Clone
+3.8% AP, +5.4% AUROCAdversarial Code Clone

+29% AP, +54% AUROC

Random classifier = 50% AP

Code clone detection accuracy
under label-preserving edits

Contrastive Code Representation Learning

What makes a good code representation?

11

Programs with the same functionality
should have similar representations!

Contrastive Code Representation Learning 12

Data augmentations from NLP
are not effective for programs

NLP data augmentations do not
produce valid programs

Synonym substitution Error injection Word shuffling

Contrastive Code Representation Learning 13

Where to get functionally equivalent programs? Use a compiler

Contrastive Code Representation Learning

Contrastive learning
Pull similar pairs together, push dissimilar pairs apart

14

“Dimensionality Reduction by Learning an Invariant Mapping” Hadsell et al.
“Representation Learning with Contrastive Predictive Coding” van der Oord et al.
“A Simple Framework for Contrastive Learning of Visual Representations” Chen et al.

Contrastive Code Representation Learning

Contrastive Code Representation Learning

Contrastive Code Representation Learning

Evaluation: Type inference for TypeScript
(1) Type inference using the DeepTyper dataset (Hellendoorn et al. 2018)

16

Type inference

👩💻
JavaScript

TypeScript

Contrastive Code Representation Learning

Evaluation: Type inference for TypeScript
(1) Type inference using the DeepTyper dataset (Hellendoorn et al. 2018)

17

Contrastive pre-train

Hybrid pre-train
+ 1.5% top-1

Contrastive pre-train
+ 2.3% top-1
+ 8.9% vs static analysis

Type inference

👩💻
JavaScript

TypeScript

Contrastive Code Representation Learning

Evaluation: Code summarization

18

(2) Extreme code summarization (Alon et al 2019)

“Submit Form”

What does this
program do? 👨❓Code

Contrastive Code Representation Learning

Evaluation: Code summarization

19

(2) Extreme code summarization (Alon et al 2019)

Contrastive pre-train

Outperforms AST-based models,
from-scratch Transformer,
MLM pre-training

What does this
program do? 👨❓Code

Contrastive Code Representation Learning

Evaluation: Zero-shot code clone detection

20

(3) Detect whether two student programs are equivalent
We evaluate using linear probe + cosine similarity

Solved same
problem?

👩💻

🧑💻

Contrastive Code Representation Learning

Evaluation: Zero-shot code clone detection

21

(3) Detect whether two student programs are equivalent
We evaluate using linear probe + cosine similarity

RoBERTa MLM pre-train
+ 1.8% AP

Contrastive pre-train
+ 2.2% AP

Hybrid pre-train
+ 5.56% AP

Solved same
problem? 👩💻🧑💻

Contrastive Code Representation Learning

Evaluation: Zero-shot code clone detection

22

(3) Detect whether two student programs are equivalent
We evaluate using linear probe + cosine similarity

Contrastive pre-train
+ 28.5% AP

Underperform random guess

Solved same
problem? 👩💻🧑💻

Contrastive Code Representation Learning

BERT vs Contrastive representation space

23

Contrastive Code Representation Learning

Contrastive Code Representation Learning
Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph E. Gonzalez, Ion Stoica

24

• We propose a self-supervised learning algorithm to learn structured representations of code.
• We leverage contrastive learning to induce the invariant that semantically equivalent programs

should have similar representations.
• Our model demonstrates consistent improvements over SOTA for code summarization, type

inference and zero-shot code clone detection.

https://github.com/parasj/contracode
https://arxiv.org/abs/2007.04973

