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Machine-aided programming tools are ubiquitous

Security analysis

Autocompletion
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Code search

Program synthesis
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SOTA tools are increasingly learning based
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Deep code search
CodeSearchNet [Husain et al. 2019]
CodeBERT [Feng et al. 2020]

Code completion
[Raychev et al. 2014]
[Svyatkovskiy et al. 2019]
OpenAI Codex [Chen et al. 2021]

Program synthesis
RobustFill [Devlin et al. 2016]
AutoPandas [Bavishi et al. 2019]

DreamCoder [Ellis et al. 2020]
[Austin et al. 2021]

Automated bug fixing
GenProg [Goues et al. 2011]
Getafix [Bader et al. 2019]
CuBERT [Kanade et al. 2019]
DrRepair [Yasunaga and Liang 2020]

Code summarization
[Allamanis et al. 2016]
[Iyer et al. 2016]
[Fernandes et al. 2018]
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Current model: pretrain language models over GitHub
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Flatten program as text

RoBERTa
(Liu et al. 2019)

BERT
(Devlin et al. 2018)

OpenAI GPT-3
(Brown et al. 2020)

OpenAI Codex
(Chen et al. 2021)
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Challenge: many ways to express single program!
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function x(maxLine) {
  const section = {
    text: '',
    data
  };

  for (; i < maxLine; i += 1) {
    section.text += `${lines[i]}\n`;
  }

  if (section) {
    parsingCtx.sections.push(section);
  }
}

Original JavaScript method

function x(t) {
  const n = {
    'text': '',
    'data': data
  };
  for (;i < t; i += 1) {
    n.text += lines[i] + '\n';
  }
  n && parsingCtx.sections.push(n);
}

Renamed variables, explicit object style, 
explicit concatenation, inline conditional

function x(t){const 
n={'text':'','data':data};for(;i<t;i+=
1)n.text+=lines[i]
+'\n';n&&parsingCtx.sections.push(n)}

Mangled source with
compressed whitespace

A single block of code can have many possible rewrites w/ equivalent semantics!
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function x(maxLine) {
  const section = {
    text: '',
    data
  };

  for (; i < maxLine; i += 1) {
    section.text += `${lines[i]}\n`;
  }

  if (section) {
    parsingCtx.sections.push(section);
  }
}

Original JavaScript method

function x(t) {
  const n = {
    'text': '',
    'data': data
  };
  for (;i < t; i += 1) {
    n.text += lines[i] + '\n';
  }
  n && parsingCtx.sections.push(n);
}

Renamed variables, explicit object style, 
explicit concatenation, inline conditional

function x(t){const 
n={'text':'','data':data};for(;i<t;i+=
1)n.text+=lines[i]
+'\n';n&&parsingCtx.sections.push(n)}

Mangled source with
compressed whitespace

A single block of code can have many possible rewrites w/ equivalent semantics!
Prior work discusses the

sensitivity of code representations to
semantics-preserving transformations!
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Challenge: pre-trained language models
are not robust to code transforms!
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Pretrained LM does not 
understand code functionality

Code clone detection accuracy
under label-preserving edits

Random classifier = 50% AP
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Challenge: pre-trained language models
are not robust to code transforms!
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Pretrained LM does not 
understand code functionality

Random classifier = 50% AP

RQ: How to learn robust 
representations of
code functionality?
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Key Result: ContraCode learns robust
representations of source code.
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Random classifier = 50% AP

Code clone detection accuracy
under label-preserving edits
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Key Result: Robust representations translate to 
improved accuracy on natural code tasks.
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Code summarization
+0.38 F1

Type prediction
+2.4% acc@1, +2.8% acc@5

Zero-shot Code Clone
+3.8% AP, +5.4% AUROCAdversarial Code Clone

+29% AP, +54% AUROC

Random classifier = 50% AP

Code clone detection accuracy
under label-preserving edits
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What makes a good code representation?
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Programs with the same functionality
should have similar representations!
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Data augmentations from NLP
are not effective for programs

NLP data augmentations do not
produce valid programs

Synonym substitution Error injection Word shuffling
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Where to get functionally equivalent programs? Use a compiler
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Contrastive learning
Pull similar pairs together, push dissimilar pairs apart
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“Dimensionality Reduction by Learning an Invariant Mapping” Hadsell et al.
“Representation Learning with Contrastive Predictive Coding” van der Oord et al.
“A Simple Framework for Contrastive Learning of Visual Representations” Chen et al.
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Evaluation: Type inference for TypeScript
(1) Type inference using the DeepTyper dataset (Hellendoorn et al. 2018)
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Type inference

👩💻
JavaScript

TypeScript
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Evaluation: Type inference for TypeScript
(1) Type inference using the DeepTyper dataset (Hellendoorn et al. 2018)
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Contrastive pre-train

Hybrid pre-train
+ 1.5% top-1

Contrastive pre-train
+ 2.3% top-1
+ 8.9% vs static analysis

Type inference

👩💻
JavaScript

TypeScript
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Evaluation: Code summarization
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(2) Extreme code summarization (Alon et al 2019)

“Submit Form”

What does this 
program do? 👨❓Code



Contrastive Code Representation Learning

Evaluation: Code summarization
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(2) Extreme code summarization (Alon et al 2019)

Contrastive pre-train

Outperforms AST-based models,
from-scratch Transformer,
MLM pre-training

What does this 
program do? 👨❓Code



Contrastive Code Representation Learning

Evaluation: Zero-shot code clone detection
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(3) Detect whether two student programs are equivalent
We evaluate using linear probe + cosine similarity

Solved same 
problem?

👩💻

🧑💻
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Evaluation: Zero-shot code clone detection
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(3) Detect whether two student programs are equivalent
We evaluate using linear probe + cosine similarity

RoBERTa MLM pre-train
+ 1.8% AP

Contrastive pre-train
+ 2.2% AP

Hybrid pre-train
+ 5.56% AP

Solved same 
problem? 👩💻🧑💻
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Evaluation: Zero-shot code clone detection
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(3) Detect whether two student programs are equivalent
We evaluate using linear probe + cosine similarity

Contrastive pre-train
+ 28.5% AP

Underperform random guess

Solved same 
problem? 👩💻🧑💻
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BERT vs Contrastive representation space
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Contrastive Code Representation Learning
Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph E. Gonzalez, Ion Stoica
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• We propose a self-supervised learning algorithm to learn structured representations of code.
• We leverage contrastive learning to induce the invariant that semantically equivalent programs 

should have similar representations.
• Our model demonstrates consistent improvements over SOTA for code summarization, type 

inference and zero-shot code clone detection.

https://github.com/parasj/contracode
https://arxiv.org/abs/2007.04973


