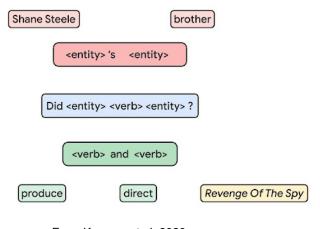


Grounded Graph Decoding improves **Compositional Generalization** in Question Answering

Yu Gai*, Paras Jain*, Wendi Zhang Joseph Gonzalez, Dawn Song, Ion Stoica

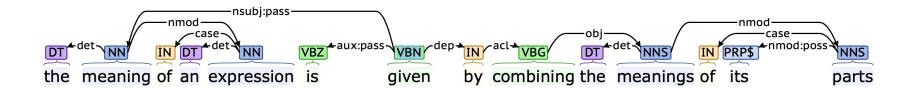

UC Berkeley RISELab

Can neural networks "make infinite use of finite means" with language? (Chomsky and Lightfoot 2002)

Compositionality is a critical component of complex language

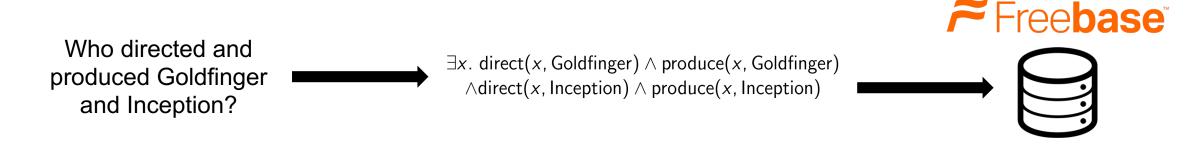
Can neural networks "make infinite use of finite means" with language? (Chomsky and Lightfoot 2002)

Humans can form novel compound sentences from simple constructs!



Compositionality is a critical component of complex language

Can neural networks "make infinite use of finite means" with language? (Chomsky and Lightfoot 2002)


Humans can form novel compound sentences from simple constructs!

Compositionality: the meaning of an expression is given by combining the meanings of its parts (Montague 1970, Frege 1884)

Benchmarking Compositional Generalization

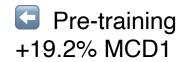
Compositional Freebase Questions (CFQ): successor to the SCAN dataset to evaluate real-world performance of question answering models

Maximum Compound Divergence splits (MCD1, MCD2, MCD3) test **generalization to unseen compositions** at test-time

"Measuring Compositional Generalization: A Comprehensive Method on Realistic Data", Keysers et al 2020

Grounded Graph Decoding improves compositional generalization

Challenge 1: Challenging to retain syntax structure from complex inputs


Grounding via Attention

Challenge 2: SPARQL output domain is group and permutation invariant

Conjunctive graph decoding

Results: SOTA results (+36% MCD1 accuracy) with smaller models and no pre-training

Method	# Params.	Accuracy per-split		
		MCD1	MCD2	MCD3
LSTM w/ attention (Keysers et al., 2020)		$28.9\pm1.8\%$	$5.0 \pm 0.8\%$	$10.8\pm0.6\%$
Transformer (Keysers et al., 2020)		$34.9\pm1.1\%$	$8.2 \pm 0.3\%$	$10.6\pm1.1\%$
Universal Transformer (Keysers et al., 2020)		$37.4\pm2.2\%$	$8.1\pm1.6\%$	$11.3\pm0.3\%$
Evolved Transformer (Keysers et al., 2020)		$42.4\pm1.0\%$	$9.3\pm0.8\%$	$10.8\pm0.2\%$
T5-base (Furrer et al., 2020)	220M	$57.6 \pm 1.4\%$	$19.5 \pm 1.0\%$	$16.6 \pm 1.5\%$
T5-large (Furrer et al., 2020)	770M	$63.3\pm0.6\%$	$22.2 \pm 1.5\%$	$18.8 \pm 2.6\%$
T5-11B (Furrer et al., 2020)	11000M	$61.4 \pm 4.8\%$	$30.1 \pm 2.2\%$	$31.2 \pm 5.7\%$
T5-11B (modified) (Furrer et al., 2020)	11000M	$61.6 \pm 12.4\%$	$31.3 \pm 12.8\%$	$33.3 \pm 2.3\%$
Grounded Graph Decoding	0.3M	$\textbf{97.9} \pm \textbf{0.2}\%$	$\textbf{47.1} \pm \textbf{10.4}\%$	$\textbf{50.8} \pm \textbf{17.2}\%$

Grounded Graph Decoding improves Compositional Generalization in Question Answering

Yu Gai*, Paras Jain*, Wendi Zhang, Joseph Gonzalez, Dawn Song, Ion Stoica

- Compositional generalization enables expressing complex concepts from simple constructs
- Large + pretrained models perform poorly at compositional generalization
- We introduce (a) **grounding** and (b) **graph decoding** to mitigate common compositional failures.
- We improve MCD1 accuracy on the CFQ dataset by 36%.

https://github.com/ucbrise/graphdecoder