

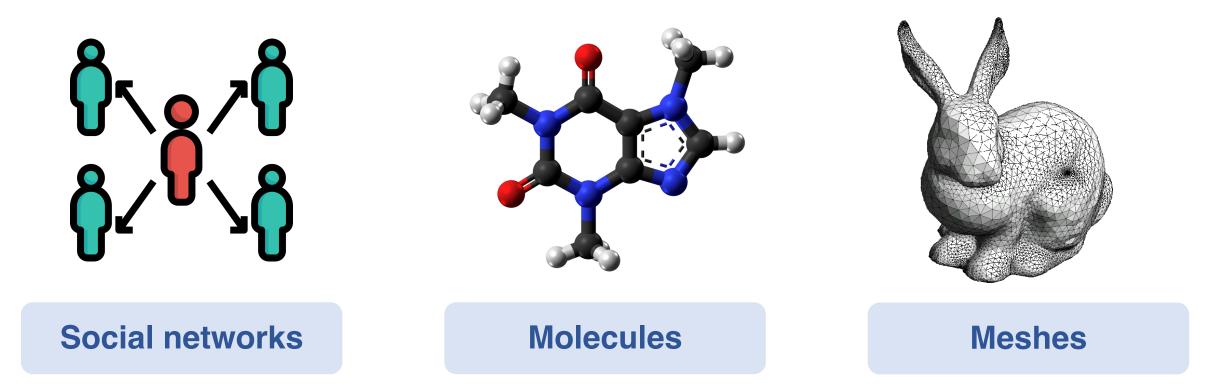
Representing Long-Range Context for Graph Neural Networks with Global Attention

Zhanghao Wu*, **Paras Jain***, Matthew A. Wright, Azalia Mirhoseini, Joseph E. Gonzalez, Ion Stoica

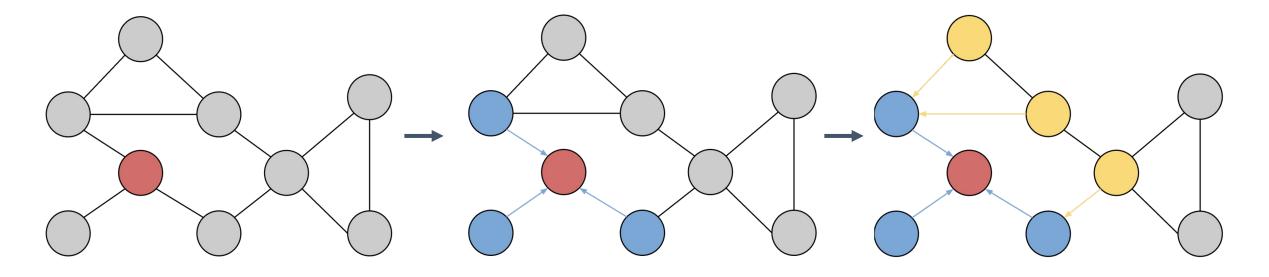
UC Berkeley RISELab, Google Brain

NeurIPS 2021

Graphs are an important representation of natural structures

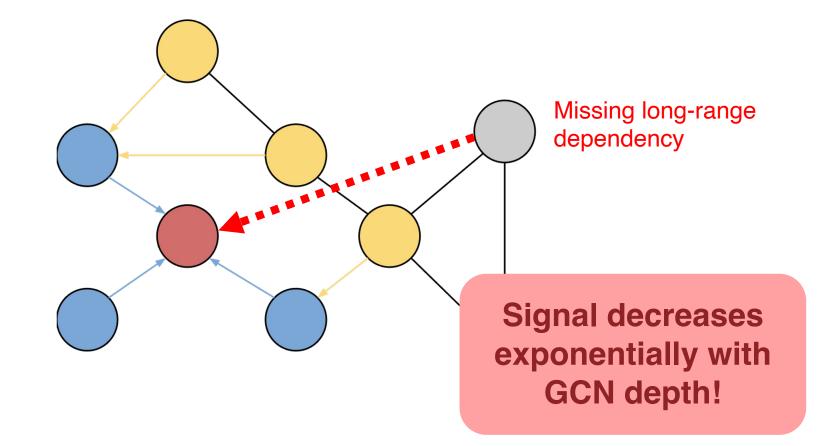


Graph neural networks aggregate local neighborhood structure



By iteratively pooling immediate neighborhood, GNNs slowly learn to represent local structure

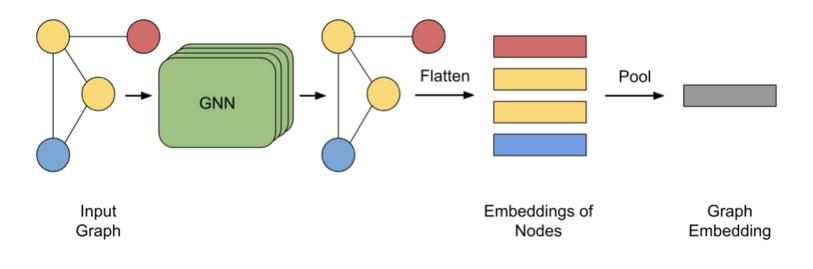
Challenge: long-range dependencies are not represented in GNNs

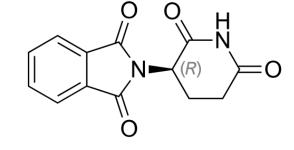


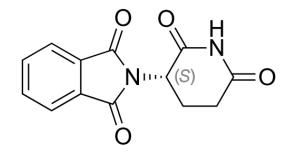
Long-range dependencies important to graph classification

Graph classification considers **pooling embeddings** into single prediction vector.

Small interactions in molecules may result in large changes in function!



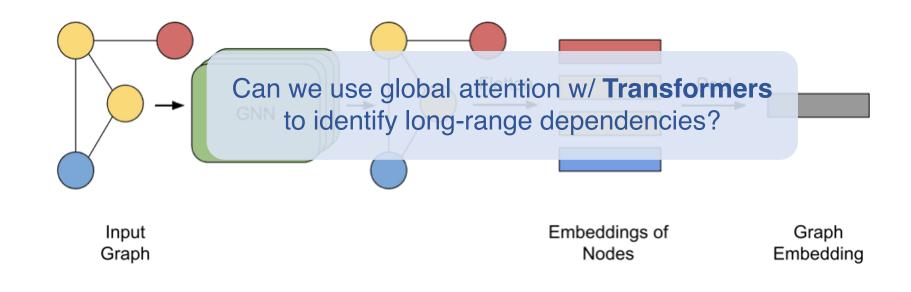




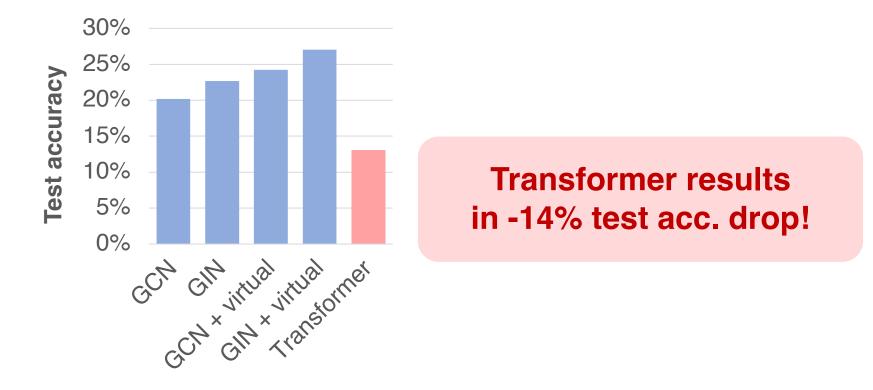
(S)-thalidomide = deadly

(R)-thalidomide = safe

Learning global interactions with GraphTrans

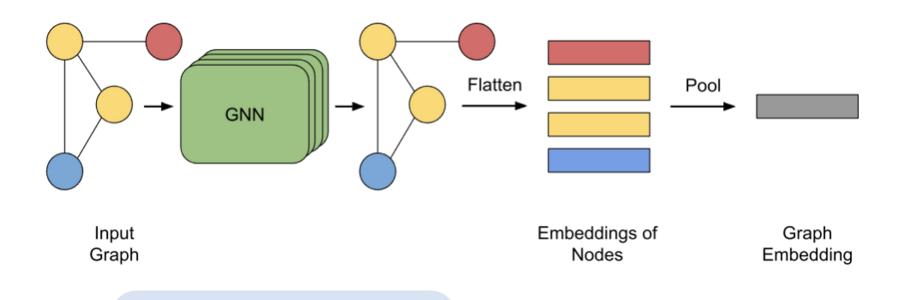


Transformer alone cannot model graph structure



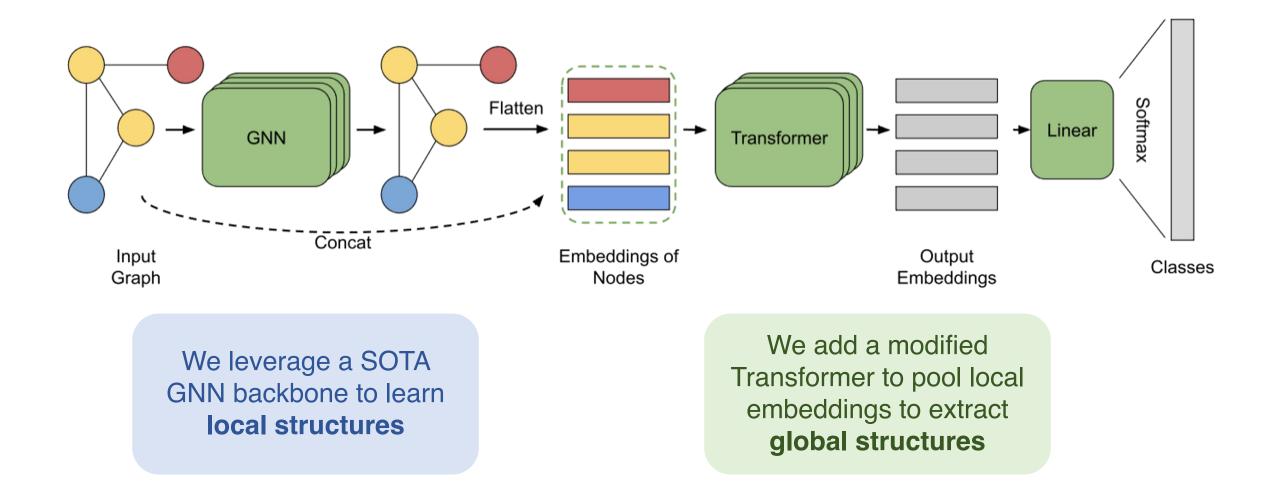
OGB-molpcba

Learning global interactions with GraphTrans

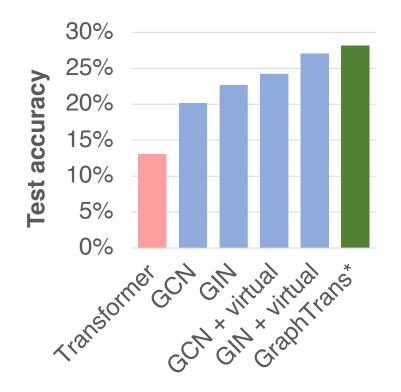


We leverage a SOTA GNN backbone to learn local structures

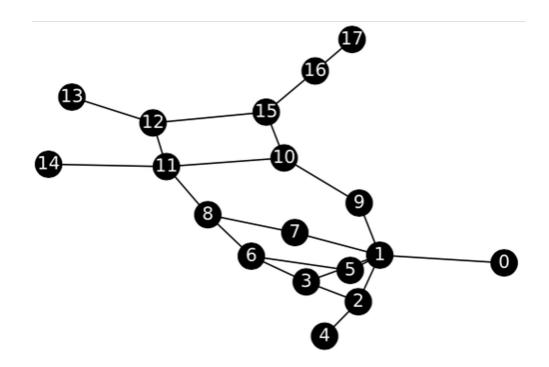
Learning global interactions with GraphTrans



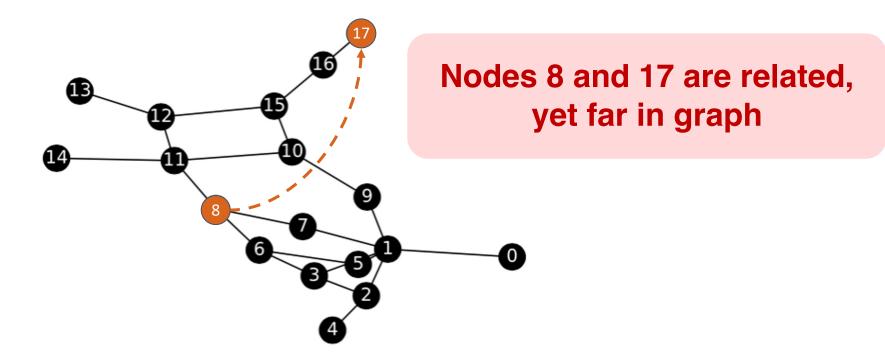
GraphTrans recovers accuracy w/ local + global structure



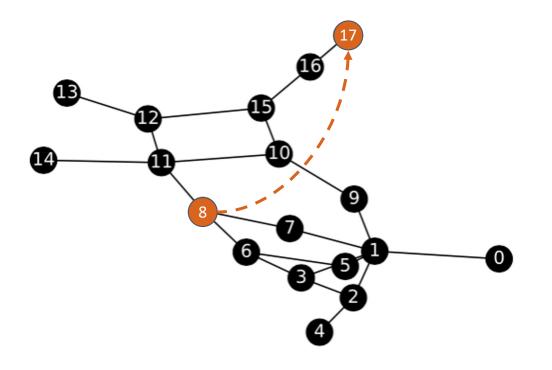
Local (GNN) + Global (Transformer) results in +15% test accuracy over global only, +1.12% over SOTA



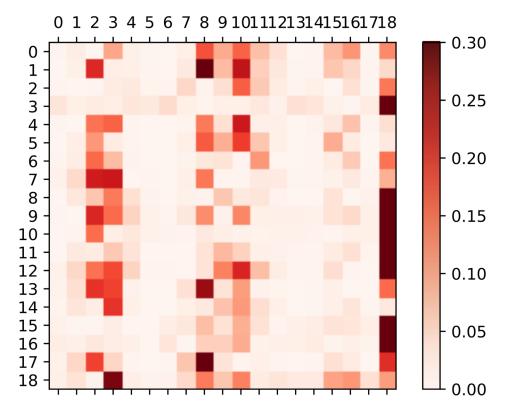
Graph from OGB-code2 dataset

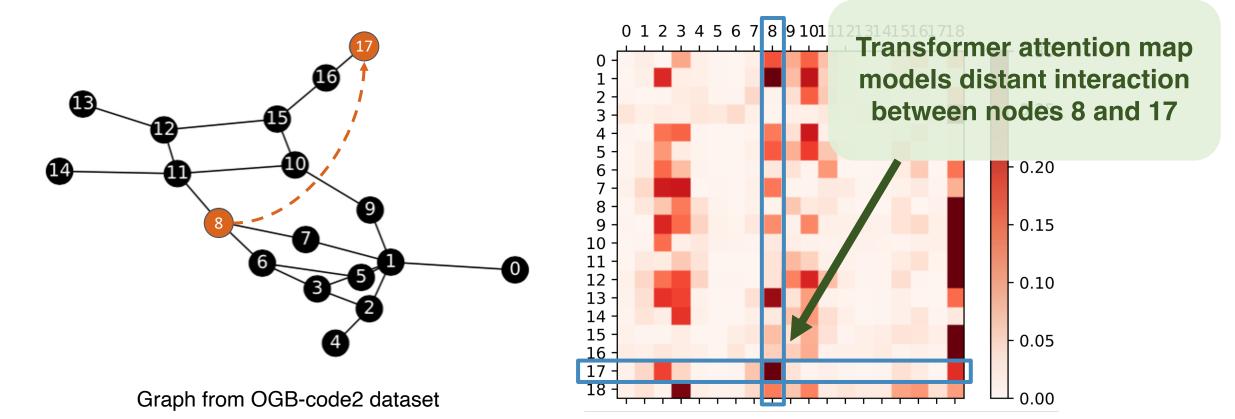


Graph from OGB-code2 dataset

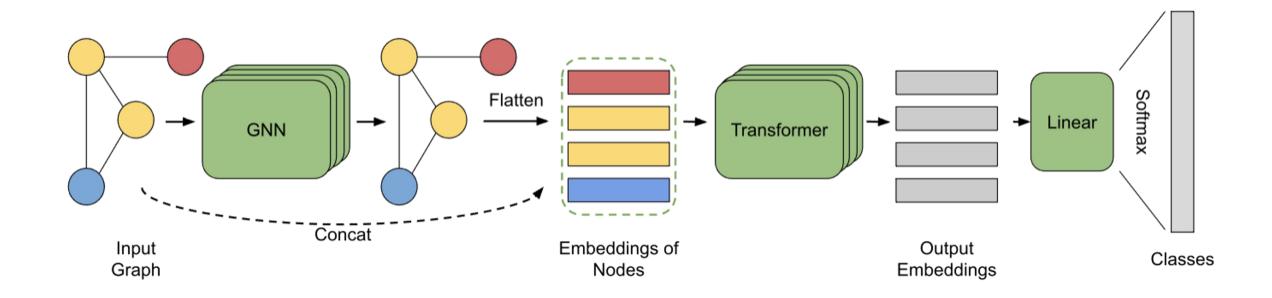


Graph from OGB-code2 dataset

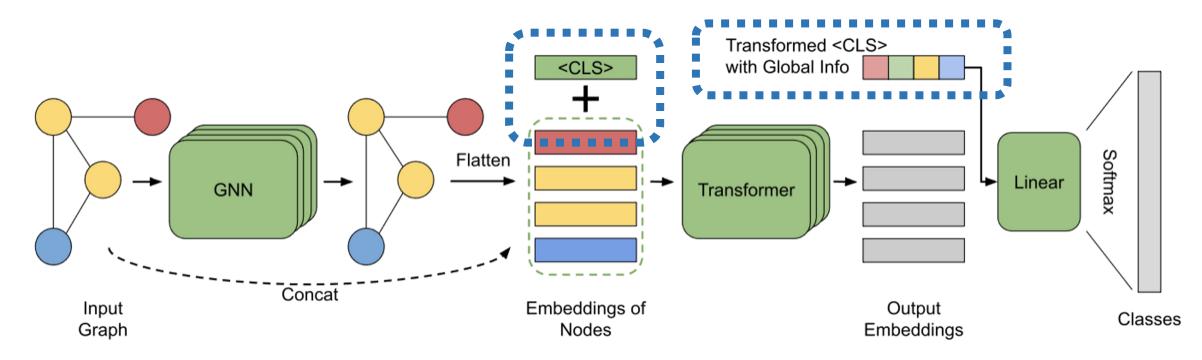




Learning global information with <CLS> token

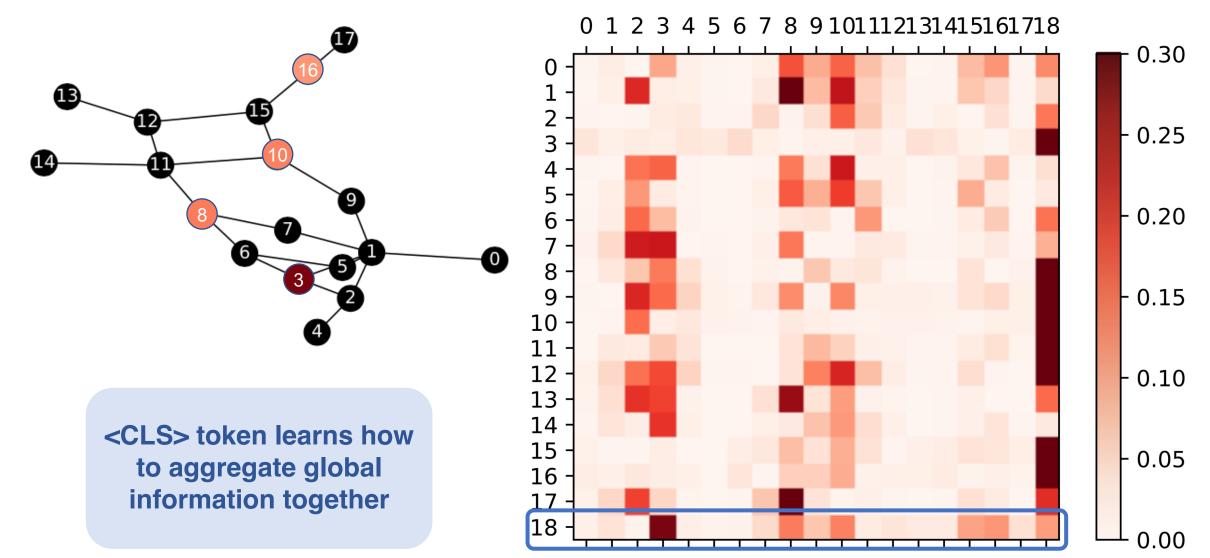


Learning global information with <CLS> token



Addition of a single global CLS token aggregates global information into a single vector

Learning global information with <CLS> token



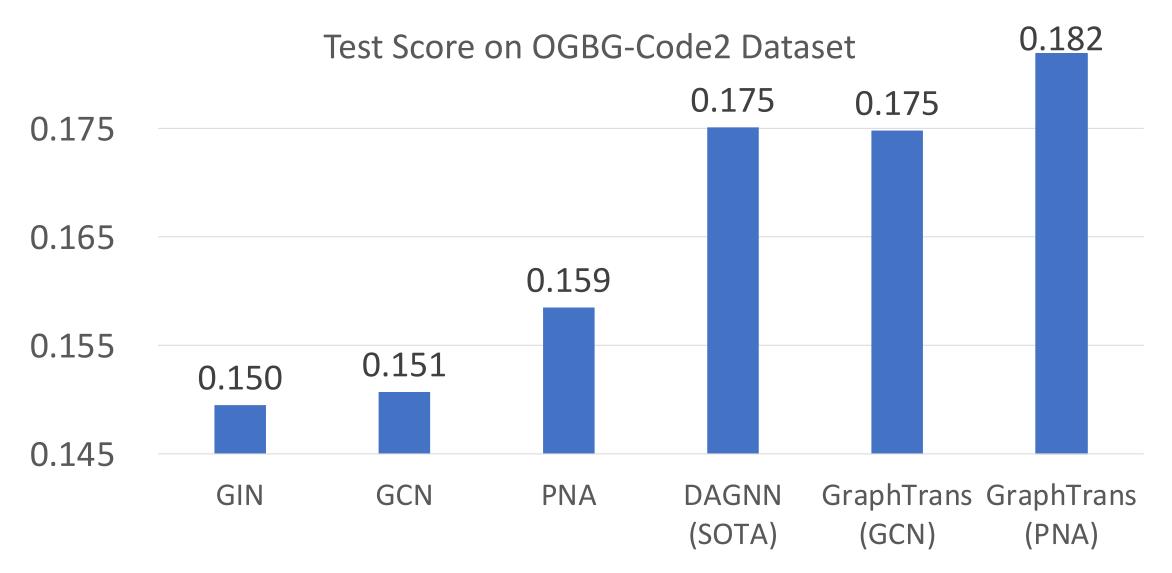
Evaluation: Biological Benchmark

	GNN Type	GNN Layers	NCI1	NCI109
SAGPool _g	GCN	3	74.2	74.1
Strong Baseline	GCN	8	81.5	-
GraphTrans (small)	GCN	3	80.2	79.0
GraphTrans (large)	GIN	4	83.0 (+8.8)	82.5 (+8.4)

Evaluation: Chemical Benchmark

	Valid	Test
GCN-Virtual	0.250	0.242
GIN-Virtual	0.280	0.270
GraphTrans (GIN)	0.288	0.272
GraphTrans (GIN-Virtual)	0.286 (+0.006)	0.282 (+0.012)

Evaluation: Computer Programming Benchmark

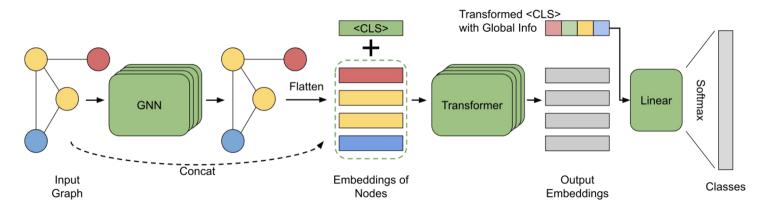


Scalability: Train on Large Graphs

#Nodes	Model	Edge Density			
		20%	40%	60%	80%
500	GCN-Virtual	44.3	58.5	79.3	99.0
	GraphTrans	48.4	57.5	76.4	93.7
1000	GCN-Virtual	90.1	171.8	249.5	ΟΟΜ
	GraphTrans	96.9	168.4	244.3	OOM
2000	GCN-Virtual	131.8	237.7	ΟΟΜ	ΟΟΜ
	GraphTrans	127.9	236.6	OOM	OOM

Representing Long-Range Context for Graph Neural Networks with Global Attention

Zhanghao Wu*, Paras Jain*, Matthew A. Wright, Azalia Mirhoseini, Joseph E. Gonzalez, Ion Stoica



- Long-range dependencies crucial to model for graph classification.
- GNNs struggle to learn long-range dependencies.
- GraphTrans combines local representations (from GNN) with global (from Transformer) to learn long-range dependencies.
- We achieve SOTA results on molecular, biological and code prediction datasets.